Browse > Article
http://dx.doi.org/10.14316/pmp.2021.32.1.1

Basic Physical Principles and Clinical Applications of Computed Tomography  

Jung, Haijo (Development Headquarter, FutureChem Co., Ltd)
Publication Information
Progress in Medical Physics / v.32, no.1, 2021 , pp. 1-17 More about this Journal
Abstract
The evolution of X-ray computed tomography (CT) has been based on the discovery of X-rays, the inception of the Radon transform, and the development of X-ray digital data acquisition systems and computer technology. Unlike conventional X-ray imaging (general radiography), CT reconstructs cross-sectional anatomical images of the internal structures according to X-ray attenuation coefficients (approximate tissue density) for almost every region in the body. This article reviews the essential physical principles and technical aspects of the CT scanner, including several notable evolutions in CT technology that resulted in the emergence of helical, multidetector, cone beam, portable, dual-energy, and phase-contrast CT, in integrated imaging modalities, such as positron-emission-tomography-CT and single-photon-emission-computed-tomography-CT, and in clinical applications, including image acquisition parameters, CT angiography, image adjustment, versatile image visualizations, volumetric/surface rendering on a computer workstation, radiation treatment planning, and target localization in radiotherapy. The understanding of CT characteristics will provide more effective and accurate patient care in the fields of diagnostics and radiotherapy, and can lead to the improvement of image quality and the optimization of exposure doses.
Keywords
Computed tomography; Physical principle; Clinical application; Technical aspects; Radiation dose;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Goodman PC. The new light: discovery and introduction of the X-ray. AJR Am J Roentgenol. 1995;165:1041-1045.   DOI
2 Barrett HH. III The radon transform and its applications. Prog Opt. 1984;21:217-286.   DOI
3 Goldman LW. Principles of CT and CT technology. J Nucl Med Technol. 2007;35:115-128; quiz 129-130.   DOI
4 Rincon-Guio C, Gomez AM, Charry JD. The role of computed tomography as a prognostic tool in traumatic brain trauma. Imaging Med. 2017;9:171-178.
5 Stierstorfer K, Rauscher A, Boese J, Bruder H, Schaller S, Flohr T. Weighted FBP--a simple approximate 3D FBP algorithm for multislice spiral CT with good dose usage for arbitrary pitch. Phys Med Biol. 2004;49:2209-2218.   DOI
6 Ginat DT, Gupta R. Advances in computed tomography imaging technology. Annu Rev Biomed Eng. 2014;16:431-453.   DOI
7 Sajja S, Lee Y, Eriksson M, Nordstrom H, Sahgal A, Hashemi M, et al. Technical principles of dual-energy cone beam computed tomography and clinical applications for radiation therapy. Adv Radiat Oncol. 2019;5:1-16.   DOI
8 van Ooijen PM, van Geuns RJ, Rensing BJ, Bongaerts AH, de Feyter PJ, Oudkerk M. Noninvasive coronary imaging using electron beam CT: surface rendering versus volume rendering. AJR Am J Roentgenol. 2003;180:223-226.   DOI
9 Mould RF. Invited review: Rontgen and the discovery of X-rays. Br J Radiol. 1995;68:1145-1176.   DOI
10 Beatty J. The radon transform and the mathematics of medical imaging. Waterville: Colby College, 2012 [cited 2021 Feb 15]. Available from: https://digitalcommons.colby.edu/cgi/viewcontent.cgi?article=1649&context=honorstheses.
11 Hornegger J, Maier A, Kowarschik M, CT Image reconstruction basics. Radiology Key, 2018 [cited 2021 Feb 15]. Available from: https://radiologykey.com/ct-image-reconstruction-basics/.
12 Maier A, Steidl S, Christlein V, Hornegger J. Medical imaging systems: an introductory guide. Cham: Springer Nature Switzerland AG; 2018:148-167.
13 Bae KT, Whiting BR. Basic principles of computed tomography physics and technical considerations. Radiology Key, 2016 [cited 2021 Feb 15]. Available from: https://radiologykey.com/basic-principles-of-computed-tomographyphysics-and-technical-considerations/.
14 Flohr TG, Schaller S, Stierstorfer K, Bruder H, Ohnesorge BM, Schoepf UJ. Multi-detector row CT systems and image-reconstruction techniques. Radiology. 2005;235:756-773.   DOI
15 Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol. 1973;46:1016-1022.   DOI
16 Kachelriess M, Schaller S, Kalender WA. Advanced singleslice rebinning in cone-beam spiral CT. Med Phys. 2000;27:754-772.   DOI
17 Kak AC, Slaney M. Principles of computerized tomographic imaging. Philadelphia: Society of Industrial and Applied Mathematics; 1987:49-112.
18 Garvey CJ, Hanlon R. Computed tomography in clinical practice. BMJ. 2002;324:1077-1080.   DOI
19 Ohana M, Jeung MY, Labani A, El Ghannudi S, Roy C. Thoracic dual energy CT: acquisition protocols, current applications and future developments. Diagn Interv Imaging. 2014;95:1017-1026.   DOI
20 Flohr T. CT systems. Curr Radiol Rep. 2013;1:52-63.   DOI
21 Kopp AF, Klingenbeck-Regn K, Heuschmid M, Kuttner A, Ohnesorge B, Flohr T, et al. Multislice computed tomography: basic principles and clinical applications. Electromedica. 2000;68:94-105.
22 Grajo JR, Patino M, Prochowski A, Sahani DV. Dual energy CT in practice: basic principles and applications. Appl Radiol. 2016;45:6-12.
23 Niu T, Zhu L. Low-dose quantitative cone-beam CT imaging in radiation therapy. Paper presented at: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC); 2012 Oct 27-Nov 3; Anaheim, USA. p. 2907-2909.
24 Srinivasan K, Mohammadi M, Shepherd J. Cone beam computed tomography for adaptive radiotherapy treatment planning. J Med Biol Eng. 2014;34:377-385.   DOI
25 Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 1: physical principles. AJNR Am J Neuroradiol. 2009;30:1088-1095.   DOI
26 Sepulcri M, Paronetto C, El Khouzai B, Novo A, Aldegheri V, Scaggion A, et al. Effectiveness of cone beam computed tomography imaging during radiation therapy for the detection of initial coronavirus lung disease 2019. Adv Radiat Oncol. 2020;5:697-699.   DOI
27 Guckenberger M. Image-guided radiotherapy based on kilovoltage cone-beam computed tomography - a review of technology and clinical outcome. Eur Oncol Haematol. 2011;7:121-124.   DOI
28 Maher MM, Hahn PF, Gervais DA, Seoighe B, Ravenscroft JB, Mueller PR. Portable abdominal CT: analysis of quality and clinical impact in more than 100 consecutive cases. AJR Am J Roentgenol. 2004;183:663-670.   DOI
29 Larke FJ, Kruger RL, Cagnon CH, Flynn MJ, McNitt-Gray MM, Wu X, et al. Estimated radiation dose associated with low-dose chest CT of average-size participants in the National Lung Screening Trial. AJR Am J Roentgenol. 2011;197:1165-1169.   DOI
30 Ono K, Hiraoka T, Ono A, Komatsu E, Shigenaga T, Takaki H, et al. Low-dose CT scan screening for lung cancer: comparison of images and radiation doses between low-dose CT and follow-up standard diagnostic CT. Springerplus. 2013;2:393.   DOI
31 Liguori C, Frauenfelder G, Massaroni C, Saccomandi P, Giurazza F, Pitocco F, et al. Emerging clinical applications of computed tomography. Med Devices (Auckl). 2015;8:265-278.   DOI
32 Davis AT, Palmer AL, Nisbet A. Can CT scan protocols used for radiotherapy treatment planning be adjusted to optimize image quality and patient dose? A systematic review. Br J Radiol. 2017;90:20160406.   DOI
33 Posiewnik M, Piotrowski T. A review of cone-beam CT applications for adaptive radiotherapy of prostate cancer. Phys Med. 2019;59:13-21.   DOI
34 Srinivasan K, Mohammadi M, Shepherd J. Applications of linac-mounted kilovoltage Cone-beam Computed Tomography in modern radiation therapy: a review. Pol J Radiol. 2014;79:181-193.   DOI
35 Willekens I, Buls N, Lahoutte T, Baeyens L, Vanhove C, Caveliers V, et al. Evaluation of the radiation dose in microCT with optimization of the scan protocol. Contrast Media Mol Imaging. 2010;5:201-207.   DOI
36 Abramovitch K, Rice DD. Basic principles of cone beam computed tomography. Dent Clin North Am. 2014;58:463-484.   DOI
37 Kumar M, Shanavas M, Sidappa A, Kiran M. Cone beam computed tomography - know its secrets. J Int Oral Health. 2015;7:64-68.
38 Rampinelli C, Origgi D, Bellomi M. Low-dose CT: technique, reading methods and image interpretation. Cancer Imaging. 2013;12:548-556.   DOI
39 Obenaus A, Smith A. Radiation dose in rodent tissues during micro-CT imaging. J X-Ray Sci Technol. 2004;12:241-249.
40 Appel E, Kropil P, Bethge OT, Aissa J, Thomas C, Antoch G, et al. Quality assurance in CT: implementation of the updated national diagnostic reference levels using an automated CT dose monitoring system. Clin Radiol. 2018;73:677.e13-e677.e20.   DOI
41 An HJ, Son JM, Jin HM, Sung JW, Chun MS. Acceptance test and clinical commissioning of CT simulator. Prog Med Phys. 2019;30:160-166.   DOI
42 Hata A, Yanagawa M, Honda O, Kikuchi N, Miyata T, Tsukagoshi S, et al. Effect of matrix size on the image quality of ultra-high-resolution CT of the lung: comparison of 512×512, 1024×1024, and 2048×2048. Acad Radiol. 2018;25:869-876.   DOI
43 Rumboldt Z, Huda W, All JW. Review of portable CT with assessment of a dedicated head CT scanner. AJNR Am J Neuroradiol. 2009;30:1630-1636.   DOI
44 Scarfe WC, Farman AG. What is cone-beam CT and how does it work? Dent Clin North Am. 2008;52:707-730, v.   DOI
45 Rassouli N, Etesami M, Dhanantwari A, Rajiah P. Detectorbased spectral CT with a novel dual-layer technology: principles and applications. Insights Imaging. 2017;8:589-598.   DOI
46 Su AW, Hillen TJ, Eutsler EP, Bedi A, Ross JR, Larson CM, et al. Low-dose computed tomography reduces radiation exposure by 90% compared with traditional computed tomography among patients undergoing hip-preservation surgery. Arthroscopy. 2019;35:1385-1392.   DOI
47 Grunert P, Muller-Forell W, Darabi K, Reisch R, Busert C, Hopf N, et al. Basic principles and clinical applications of neuronavigation and intraoperative computed tomography. Comput Aided Surg. 1998;3:166-173.   DOI
48 Coursey CA, Nelson RC, Boll DT, Paulson EK, Ho LM, Neville AM, et al. Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics. 2010;30:1037-1055.   DOI
49 Silva AC, Morse BG, Hara AK, Paden RG, Hongo N, Pavlicek W. Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics. 2011;31:1031-1046; discussion 1047-1050.   DOI
50 Nam KY, Kim KW, Kim JH, Son HH, Ryu JH, Kang SH, et al. Micro-CT system for small animal imaging. Korean J Med Phys. 2008;19:102-112.
51 Goldman LW. Principles of CT: radiation dose and image quality. J Nucl Med Technol. 2007;35:213-225; quiz 226-228.   DOI
52 Costello JE, Cecava ND, Tucker JE, Bau JL. CT radiation dose: current controversies and dose reduction strategies. AJR Am J Roentgenol. 2013;201:1283-1290.   DOI
53 Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK. Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics. 1999;19:745-764.   DOI
54 Duran AH, Duran MN, Masood I, Maciolek LM, Hussain H. The additional diagnostic value of the three-dimensional volume rendering imaging in routine radiology practice. Cureus. 2019;11:e5579.
55 Kubo T, Ohno Y, Takenaka D, Nishino M, Gautam S, Sugimura K, et al. Standard-dose vs. low-dose CT protocols in the evaluation of localized lung lesions: capability for lesion characterization-iLEAD study. Eur J Radiol Open. 2016;3:67-73.   DOI
56 Lell MM, Wildberger JE, Alkadhi H, Damilakis J, Kachelriess M. Evolution in computed tomography: the battle for speed and dose. Invest Radiol. 2015;50:629-644.   DOI
57 Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009; 169:2078-2086.   DOI
58 Goo HW. CT radiation dose optimization and estimation: an update for radiologists. Korean J Radiol. 2012;13:1-11.   DOI
59 American Association of Physicists in Medicine. Specification and acceptance testing of computed tomography scanners. Alexandria: American Association of Physicists in Medicine. 1993; 39.
60 American College of Radiology. The 2017 Computed Tomography Quality Control manual. American College of Radiology; 2017.
61 Lee SC, Kim HK, Chun IK, Cho MH, Cho MH, Lee SY. Development of a micro-CT system for small animal imaging. J Biomed Eng Res. 2004;25:97-102.
62 Mutic S, Palta JR, Butker EK, Das IJ, Huq MS, Loo LN, et al. Quality assurance for computed-tomography simulators and the computed-tomography-simulation process: report of the AAPM Radiation Therapy Committee Task Group No. 66. Med Phys. 2003;30:2762-2792.   DOI
63 Mansour Z, Mokhtar A, Sarhan A, Ahmed MT, El-Diasty T. Quality control of CT image using American College of Radiology (ACR) phantom. Egypt J Radiol Nucl Med. 2016;47:1665-1671.   DOI
64 McCollough CH, Bruesewitz MR, McNitt-Gray MF, Bush K, Ruckdeschel T, Payne JT, et al. The phantom portion of the American College of Radiology (ACR) computed tomography (CT) accreditation program: practical tips, artifact examples, and pitfalls to avoid. Med Phys. 2004;31:2423-2442.   DOI