• Title/Summary/Keyword: phosphor materials

Search Result 531, Processing Time 0.02 seconds

Up-conversion Luminescence Characterization of CeO2:Ho3+/Yb3+ Particles Prepared by Spray Pyrolysis

  • Jung, Kyeong Youl;Min, Byeong Ho;Kim, Dae Sung;Choi, Byung-Ki
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.248-255
    • /
    • 2019
  • Spherical $CeO_2:Ho^{3+}/Yb^{3+}$ particles were synthesized using spray pyrolysis, and the upconversion (UC) properties were investigated with changing the preparation conditions and the infrared pumping power. The resulting particles had a size of about $1{\mu}m$ and hollow structure. The prepared $CeO_2:Ho^{3+}/Yb^{3+}$ particles exhibited intense green emission due to the $^5F_4/^5S_2{\rightarrow}^5I_8$ transition of $Ho^{3+}$ and showed weak red or near-IR peaks. In terms of achieving the highest UC emission, the optimal concentrations of $Ho^{3+}$ and $Yb^{3+}$ were 0.3% and 2.0%, respectively. The UC emission intensity of prepared $CeO_2:Ho^{3+}/Yb^{3+}$ particles had a linear relationship with crystallite size and concentration quenching was caused by dipole-dipole interaction between the same ions. Based on the dependency of UC emission on the pumping power, the observed green upconversion was achieved through a typical two-photon process and concluded that the main energy transfer from $Yb^{3+}$ to $Ho^{3+}$ was involved in the ground-state adsorption (GSA) process.

Color Tuning of a Mn4+ Doped Phosphor : Sr1-xBaxGe4O9:MnMn4+0.005 (0.00 ≤ x ≤ 1.00) (Mn4+ 도핑된 형광체, Sr1-xBaxGe4O9:MnMn4+0.005 (0.00 ≤ x ≤ 1.00)의 Color Tuning)

  • Park, Woon Bae
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.163-167
    • /
    • 2017
  • Along with the progress of white LED technology, red phosphors have become increasingly important in industry and academia, and a more specific demand has steadily increased in the market. Red phosphors are used in high efficiency and high rendering LED lightings. However, using red phosphors with $Eu^{2+}$ activators caused color rewarming and reduced emission intensity in white LED chips due to strong reabsorption in the green or yellow wavelength range caused by the 4f-5d transition. $Mn^{4+}$ doped phosphors which have no such drawbacks and which can further improve the color rendering index (CRI) are now of great interest. However, $Mn^{4+}$-doped phosphors have a disadvantage in that the emission wavelength is determined depending on the host due to the $^2E_g{\rightarrow}^4A_2$ transition. In this study, the $SrO-BaO-GeO_2$ solid-solution was selected, and $Sr_{1-x}B_axGe_4O_9:Mn^{4+}{_{0.005}}$ ($0{\leq}x{\leq}1$) phosphors were synthesized and characterized. This led to a versatile color tuning in LED technology.

Synthesis and Photoluminescence Properties of Y1-x(P1-y-zNbyVz)O4:Eux Phosphors by Modified Combinatorial Chemistry Method (조합화학 기법을 이용한 Y1-x(P1-y-zNbyVz)O4:Eux 형광체의 합성 및 빛 발광 특성)

  • Zeon, Il-Woon;Sohn, Kee-Sun;Park, Hee-Dong
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.1
    • /
    • pp.69-75
    • /
    • 2002
  • The $Y_{1-x}(P_{1-y-z}Nb_yV_z)O_4:Eu_x$ blue and red emitting phosphors were prepared by the combinatorial chemistry method. The combinatorial library was designed to investigate the luminescence of the $Y_{1-x}(P_{1-y-z}Nb_yV_z)O_4:Eu_x$ phosphors under 254 nm and 147 nm excitations. In addition, the crystallinity and morphology of phosphors were checked by XRD and SEM. Based on the results from the combinatorial screenings, luminescent properties of phosphors are strongly dependent on the concentration of doping metal ions. It was found that a new phosphor $Y_{0.88}(P_{0.92}Nb_{0.05}V_{0.03})O_4:Eu_{0.12}$ shows excellent luminescent efficiency comparing to the $Y_{0.88}PO_4:Eu_{0.12}$ red phosphor.

Synthesis and Optical Properties of CaMoO4:RE3+ (RE=Eu, Dy) Phosphors (CaMoO4:RE3+ (RE=Eu, Dy) 형광체의 제조와 광학 특성)

  • Cho, Shinho
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.79-85
    • /
    • 2013
  • Rare earth ions, either $Eu^{3+}$ or $Dy^{3+}$-doped $CaMoO_4$ phosphors were synthesized by using the solid-state reaction method. The crystalline structure of all the phosphor powders, irrespective of the type and concentration of activator ions, was found to be a tetragonal system with the main diffraction peak at (112) plane. For $Eu^{3+}$-doped $CaMoO_4$ phosphors, the grain particles showed an increasing tendency and the pebble-like patterns with a very homogeneous size distribution in the range of 0.01~0.10 mol of $Eu^{3+}$ ions concentration, and the excitation spectra were composed of a broad band centered at 311 nm and weak multiline peaked in the range of 360~470 nm. The dominant emission spectrum was the strong red emission centered at 618 nm due to the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ ions. For $Dy^{3+}$-doped $CaMoO_4$ powders, excitation spectra showed a charge transfer band centered at 303 nm and relatively weak bands resulting from the transitions of $Dy^{3+}$ ions and the main yellow emission spectrum was observed at 578 nm, which was assigned to the $^4F_{9/2}{\rightarrow}^7H_{13/2}$ transition of $Dy^{3+}$ ions.

Optical Properties of MgMoO4:Dy3+,Eu3+ Phosphors Prepared with Different Eu3+ Molar Ratios (Eu3+ 이온의 몰 비 변화에 따른 MgMoO4:Dy3+,Eu3+ 형광체의 광학 특성)

  • Kim, Jung Dae;Cho, Shinho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.186-191
    • /
    • 2016
  • The effects of $Eu^{3+}$ doping on the structural, morphological, and optical properties of $MgMoO_4:Dy^{3+},Eu^{3+}$ phosphors prepared by solid-state reaction technique were investigated. XRD patterns exhibited that all the synthesized phosphors showed a monoclinic system with a dominant (220) diffraction peak, irrespective of the content of $Eu^{3+}$ ions. The surface morphology of $MgMoO_4:Dy^{3+},Eu^{3+}$ phosphors was studied using scanning electron microscopy and the grains showed a tendency to agglomerate as the content of $Eu^{3+}$ ions increased. The excitation spectra of the phosphor powders were composed of a strong charge transfer band centered at 294 nm in the range of 230~340 nm and two intense peaks at 354 and 389 nm, respectively, arising from the $^6H_{15/2}{\rightarrow}^6P_{7/2}$ and $^6H_{15/2}{\rightarrow}^4M_{21/2}$ transitions of $Dy^{3+}$ ions. The emission spectra of the $Mg_{0.85}MoO_4$:10 mol% $Dy^{3+}$ phosphors without incorporating $Eu^{3+}$ ions revealed a strong yellow band centered at 573 nm resulting from the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of $Dy^{3+}$. As the content of $Eu^{3+}$ was increased, the intensity of the yellow emission was gradually decreased, while that of red emission band located at 614 nm began to appear, approached a maximum value at 10 mol%, and then decreased at 15 mol% of $Eu^{3+}$. These results indicated that white light emission could be achieved by controlling the contents of the $Dy^{3+}$ and $Eu^{3+}$ ions incorporated into the $MgMoO_4$ host crystal.

Synthesis and Luminescence Properties of Tb3+-Doped K2BaW2O8 Phosphors (Tb3+ 이온이 첨가된 K2BaW2O8 형광체의 합성 및 형광특성)

  • Jang, Kyoung-Hyuk;Koo, Jae-Heung;Seo, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.489-493
    • /
    • 2012
  • Green phosphors $K_2BaW_2O_8:Tb^{3+}$(1.0 mol%) were synthesized by solid state reaction method. Differential thermal analysis was applied to trace the reaction processes. Three endothermic values of 95, 706, and $1055^{\circ}C$ correspond to the loss of absorbed water, the release of carbon dioxide, and the beginning of the melting point, respectively. The phase purity of the powders was examined using powder X-ray diffraction(XRD). Two strong excitation bands in the wavelength region of 200-310 nm were found to be due to the ${WO_4}^{2-}$ exciton transition and the 4f-5d transition of $Tb^{3+}$ in $K_2BaW_2O_8$. The excitation spectrum presents several lines in the range of 310-380 nm; these are assigned to the 4f-4f transitions of the $Tb^{3+}$ ion. The strong emission line at around 550 nm, due to the $^5D_4{\rightarrow}^7F_5$ transition, is observed together with weak lines of the $^5D_4{\rightarrow}^7F_J$(J = 3, 4, and 6) transitions. A broad emission band peaking at 530 nm is observed at 10 K, while it disappears at room temperature. The decay times of $Tb^{3+}$ $^5D_4{\rightarrow}^7F_5$ emission are estimated to be 4.8 and 1.4 ms, respectively, at 10 and 295 K; those of the ${WO_4}^{2-}$ exciton emissions are 22 and 0.92 ${\mu}s$ at 10 and 200 K, respectively.

Photoluminescence Properties of SrSnO3:Dy3+ White Light-Emitting Phosphors (SrSnO3:Dy3+ 백색광 형광체의 발광 특성)

  • Shin, Johngeon;Cho, Shinho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.710-716
    • /
    • 2017
  • New white-light-emitting $SrSnO_3:Dy^{3+}$ phosphors were prepared using different concentrations of $Dy^{3+}$ ions via a solid-state reaction. The phase structure, luminescence, and morphological properties of the synthesized phosphors were investigated using X-ray diffraction analysis, fluorescence spectrophotometry, and scanning electron microscopy, respectively. All the synthesized phosphors crystallized in an orthorhombic phase with a major (020) diffraction peak, irrespective of the concentration of $Dy^{3+}$ ions. The excitation spectra were composed of a broad band centered at 298 nm, ascribed to the $O^2-Dy^{3+}$ charge transfer band and five weak bands in the range of 350~500 nm. The emission spectra of $SrSnO_3:Dy^{3+}$ phosphors consisted of three bands centered at 485, 577, and 665 nm, corresponding to the $^4F_{9/2}{\rightarrow}^6H_{15/2}$, $^4F_{9/2}{\rightarrow}^6H_{13/2}$, and $^4F_{9/2}{\rightarrow}^6H_{11/2}$ transitions of $Dy^{3+}$, respectively. As the $Dy^{3+}$ concentration increased from 1 to 15 mol%, the intensities of all the emission bands gradually increased, reached maxima at 15 mol% of $Dy^{3+}$ ions, and then decreased rapidly at 20 mol% due to concentration quenching. The critical distance between neighboring $Dy^{3+}$ ions for concentration quenching was calculated to be $9.4{\AA}$. The optimal white light emission by the $SrSnO_3:Dy^{3+}$ phosphors was obtained when the $Dy^{3+}$ concentration was 15 mol%.

Synthesis and Characteristics of SrAl2O4: Eu2+, Dy3+ Long Afterglow Phosphors by Polymerized Complex Method (착체중합법을 이용한 SrAl2O4: Eu2+, Dy3+ 축광성 형광체의 합성)

  • Kim, Tae-Ho;Hwang, Hae-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.561-569
    • /
    • 2016
  • $SrAl_2O_4$: $Eu^{2+}$ and $Dy^{3+}$ phosphorescent phosphors were synthesized using the polymerized complex method. Generally, phosphorescent phosphors synthesized by conventional solid state reaction show a micro-sized particle diameter; thus, this process is restricted to applications such as phosphorescent ink and paint. However, it is possible to synthesize homogeneous multi-component powders with fine particle diameter by wet process such as the polymerized complex method. The characteristics of $SrAl_2O_4$: $Eu^{2+}$ and $Dy^{3+}$ powders prepared by polymerized complex method with one and two step calcination processes were comparatively analyzed. Temperatures of organic material removal and crystallization were observed through TG-DTA analysis. The crystalline phase and crystallite size of the $SrAl_2O_4$: $Eu^{2+}$ and $Dy^{3+}$ phosphorescent phosphors were analyzed by XRD. Microstructures and afterglow characteristics of the $SrAl_2O_4$: $Eu^{2+}$ and $Dy^{3+}$ phosphors were measured by SEM and spectrofluorometry, respectively.

Accuracy of various imaging methods for detecting misfit at the tooth-restoration interface in posterior teeth

  • Francio, Luciano Andrei;Silva, Fernanda Evangelista;Valerio, Claudia Scigliano;Cardoso, Claudia Assuncao e Alves;Jansen, Wellington Correa;Manzi, Flavio Ricardo
    • Imaging Science in Dentistry
    • /
    • v.48 no.2
    • /
    • pp.87-96
    • /
    • 2018
  • Purpose: The present study aimed to evaluate which of the following imaging methods best assessed misfit at the tooth-restoration interface: (1) bitewing radiographs, both conventional and digital, performed using a photostimulable phosphor plate (PSP) and a charge-coupled device (CCD) system; (2) panoramic radiographs, both conventional and digital; and (3) cone-beam computed tomography (CBCT). Materials and Methods: Forty healthy human molars with class I cavities were selected and divided into 4 groups according to the restoration that was applied: composite resin, composite resin with liner material to simulate misfit, dental amalgam, and dental amalgam with liner material to simulate misfit. Radiography and tomography were performed using the various imaging methods, and the resulting images were analyzed by 2 calibrated radiologists. The true presence or absence of misfit corresponding to an area of radiolucency in regions subjacent to the esthetic and metal restorations was validated with microscopy. The data were analyzed using a receiver operating characteristic (ROC) curve, and the scores were compared using the Cohen kappa coefficient. Results: For bitewing images, the digital systems (CCD and PSP) showed a higher area under the ROC curve (AUROC) for the evaluation of resin restorations, while the conventional images exhibited a larger AUROC for the evaluation of amalgam restorations. Conventional and digital panoramic radiographs did not yield good results for the evaluation of resin and amalgam restorations (P<.05). CBCT images exhibited good results for resin restorations(P>.05), but showed no discriminatory ability for amalgam restorations(P<.05). Conclusion: Bitewing radiographs (conventional or digital) should be the method of choice when assessing dental restoration misfit.

Preparation and Luminescent Property of Eu3+-doped A3Al1-zInzO4F (A = Ca, Sr, Ba, z = 0, 0.1) Phosphors (Eu3+-doped A3Al1-zInzO4F (A = Ca, Sr, Ba, z = 0, 0.1)의 합성과 형광특성)

  • Kim, Yeo-Jin;Park, Sang-Moon
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.644-649
    • /
    • 2011
  • [ $A_{3-2x/3}Al_{1-z}In_{z}O_4F:Eu_x^{3+}$ ](A = Ca, Sr, Ba, x = -0.15, z = 0, 0.1) oxyfluoride phosphors were simply prepared by the solid-state method at $1050^{\circ}C$ in air. The phosphors had the bright red photoluminescence (PL) spectra of an $A_{3-2x/3}Al_{1-z}In_{z}O_4F$ for $Eu^{3+}$ activator. X-ray diffraction (XRD) patterns of the obtained red phosphors were exhibited for indexing peak positions and calculating unit-cell parameters. Dynamic excitation and emission spectra of $Eu^{3+}$ activated red oxyfluoride phosphors were clearly monitored. Red and blue shifts gradually occurred in the emission spectra of $Eu^{3+}$ activated $A_3AlO_4F$ oxyfluoride phosphors when $Sr^{2+}$ by $Ca^{2+}$ and $Ba^{2+}$ ions were substituted, respectively. The concentration quenching as a function of $Eu^{3+}$ contents in $A_{3-2x/3}AlO_4F:Eu^{3+}$ (A = Ca, Sr, Ba) was measured. The interesting behaviors of defect-induced $A_{3-2x/3}Al_{1-z}In_{z}O_{4-{\alpha}}F_{1-{\delta}}$ phosphors with $Eu^{3+}$ activator are discussed based on PL spectra and CIE coordinates. Substituting $In^{3+}$ into the $Al^{3+}$ position in the $A_{3-2x/3}AlO_4F:Eu^{3+}$ oxyfluorides resulted in the relative intensity of the red emitted phosphors noticeably increasing by seven times.