Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.9.489

Synthesis and Luminescence Properties of Tb3+-Doped K2BaW2O8 Phosphors  

Jang, Kyoung-Hyuk (Department of Physics, Pukyong National University)
Koo, Jae-Heung (Department of Physics, Pukyong National University)
Seo, Hyo-Jin (Department of Physics, Pukyong National University)
Publication Information
Korean Journal of Materials Research / v.22, no.9, 2012 , pp. 489-493 More about this Journal
Abstract
Green phosphors $K_2BaW_2O_8:Tb^{3+}$(1.0 mol%) were synthesized by solid state reaction method. Differential thermal analysis was applied to trace the reaction processes. Three endothermic values of 95, 706, and $1055^{\circ}C$ correspond to the loss of absorbed water, the release of carbon dioxide, and the beginning of the melting point, respectively. The phase purity of the powders was examined using powder X-ray diffraction(XRD). Two strong excitation bands in the wavelength region of 200-310 nm were found to be due to the ${WO_4}^{2-}$ exciton transition and the 4f-5d transition of $Tb^{3+}$ in $K_2BaW_2O_8$. The excitation spectrum presents several lines in the range of 310-380 nm; these are assigned to the 4f-4f transitions of the $Tb^{3+}$ ion. The strong emission line at around 550 nm, due to the $^5D_4{\rightarrow}^7F_5$ transition, is observed together with weak lines of the $^5D_4{\rightarrow}^7F_J$(J = 3, 4, and 6) transitions. A broad emission band peaking at 530 nm is observed at 10 K, while it disappears at room temperature. The decay times of $Tb^{3+}$ $^5D_4{\rightarrow}^7F_5$ emission are estimated to be 4.8 and 1.4 ms, respectively, at 10 and 295 K; those of the ${WO_4}^{2-}$ exciton emissions are 22 and 0.92 ${\mu}s$ at 10 and 200 K, respectively.
Keywords
$K_2BaW_2O_8$; $Tb^{3+}$; solid-state reaction; tungstate; green phosphor;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Q. Zhang, Q. Meng, Y. Tian, X. Feng, J. Sun and S. Lu, J. Rare Earths, 29, 815 (2011).   DOI   ScienceOn
2 Q. Wei and D. Chen, Optic. Laser Tech., 41, 783 (2009).   DOI   ScienceOn
3 Y. Huang and H. J. Seo, J. Electrochem. Soc., 158(7), J215 (2011).   DOI   ScienceOn
4 C. Qin, Y. Huang and H. J. Seo, J. Alloy. Comp., 534, 86 (2012).   DOI   ScienceOn
5 P. Akhmedova, B. Y. Gamataeva and A. M. Gasanaliev, Russ. J. Inor. Chem., 54, 779 (2009).   DOI
6 A. M. Gasanaliev, P. A. Akhmedova and B. Y. Gamataeva, Russ. J. Inor. Chem., 57, 274 (2012).   DOI
7 A. M. Gasanaliev, G. M. Minkhadzhev and B. Y. Gamataeva, Russ. J. Inor. Chem., 53, 1325 (2008).   DOI
8 A. M. Gasanaliev, G. M. Minkhadzhev and B. Y. Gamataeva, Russ. J. Inor. Chem., 52, 621 (2007).   DOI
9 V. D. Zhuravlev, Y. A. Velikodnyi, A. S. Vinogradova- Zhabrova, A. P. Tyutyunnik and V. G. Zubkov, Russ. J. Inor. Chem., 53, 1632 (2008).   DOI
10 R. D. Shannon, Acta Crystallogr. A, 32, 751 (1976).   DOI
11 T. Hoshina, Luminescence of Rare Earth Ions, p. 12, Sony Research Center Rep., Japan (1983) (in Japanese).
12 W. T. Carnall, P. R. Fields and K. Rajnak, J. Chem. Phys., 49, 4447 (1968).   DOI
13 X. M. Zhang, W. L. Li, K. H. Jang and H. J. Seo, Curr. Appl. Phys., 12, 299 (2012).   DOI
14 K. H. Jang and J. H. Koo, Sae Mulli, 62, 928 (2012) (in Korean).   DOI
15 Y. Wu, D. Ding, S. Pan, F. Yang and G. Ren, J. Alloy. Comp., 509, 7186 (2011).   DOI   ScienceOn
16 Q. Li, J. Huang and D. Chen, J. Alloy. Comp., 509, 1007 (2011).   DOI   ScienceOn
17 S. C. Prashantha, B. N. Lakshminarasappa and B. M. Nagabhushana, J. Alloy. Comp., 509, 10185 (2011).   DOI   ScienceOn
18 K. H. Jang, N. M. Khaidukov, V. P. Tuyen, S. I. Kim, Y. M. Yu and H. J. Seo, J. Alloy. Comp., 536, 47 (2012).   DOI   ScienceOn
19 Y. M. Moon, S. H. Choi, H. K. Jung and S. H. Lim, Kor. J. Mater. Res., 18, 511 (2008) (in Korean).   DOI   ScienceOn
20 J. H. Seo, S. Choi, S. Nahm and H. K. Jung, Kor. J. Mater. Res., 22, 103 (2012) (in Korean).   DOI   ScienceOn
21 J. Liao, B. Qiu and H. Lai, J. Lumin., 129, 668 (2009).   DOI   ScienceOn
22 Z. Ju, R. Wei, X. Gao, W. Liu and C. Pang, Opt. Mater., 33, 909 (2011).   DOI   ScienceOn
23 F. S. Wen, X. Zhao, H. Huo, J. S. Chen, E. Shu-Lin and J. H. Zhang, Mater. Lett., 55, 152 (2002).   DOI   ScienceOn
24 M. Mai and C. Feldmann, J. Mater. Sci., 47, 1427 (2012).   DOI
25 Q. Xiao, Q. Zhou and M. Li, J. Lumin., 130, 1092 (2010).   DOI   ScienceOn
26 M. J. Treadaway and R. C. Powell, J. Chem. Phys., 61, 4003 (1974).   DOI
27 B. Grobelna, B. Lipowska and A. M. K onkowski, J. Alloy. Comp., 419, 191 (2006).   DOI   ScienceOn
28 S. Cho and S. W. Cho, Kor. J. Mater. Res., 22, 215 (2012) (in Korean).   DOI   ScienceOn
29 S. Nakamura, MRS Bull., 22, 29 (1997).
30 S. Nakamura, G. Fasol and S. J. Pearton, The Blue Laser Diode: The Complete Story, p. 7, Springer Verlag, NY, USA (2000).
31 Y. F. Liu, Z. P. Yang and Q. M. Yu, J. Alloy. Comp., 509, L199 (2011).   DOI   ScienceOn