Browse > Article
http://dx.doi.org/10.5012/jkcs.2017.61.4.163

Color Tuning of a Mn4+ Doped Phosphor : Sr1-xBaxGe4O9:MnMn4+0.005 (0.00 ≤ x ≤ 1.00)  

Park, Woon Bae (Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University)
Publication Information
Abstract
Along with the progress of white LED technology, red phosphors have become increasingly important in industry and academia, and a more specific demand has steadily increased in the market. Red phosphors are used in high efficiency and high rendering LED lightings. However, using red phosphors with $Eu^{2+}$ activators caused color rewarming and reduced emission intensity in white LED chips due to strong reabsorption in the green or yellow wavelength range caused by the 4f-5d transition. $Mn^{4+}$ doped phosphors which have no such drawbacks and which can further improve the color rendering index (CRI) are now of great interest. However, $Mn^{4+}$-doped phosphors have a disadvantage in that the emission wavelength is determined depending on the host due to the $^2E_g{\rightarrow}^4A_2$ transition. In this study, the $SrO-BaO-GeO_2$ solid-solution was selected, and $Sr_{1-x}B_axGe_4O_9:Mn^{4+}{_{0.005}}$ ($0{\leq}x{\leq}1$) phosphors were synthesized and characterized. This led to a versatile color tuning in LED technology.
Keywords
LED; Phosphor; DFT; Band gap; XRD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhu, H.; Lin, C. C.; Luo, W.; Shu, S.; Liu, Z.; Liu, Y.; Kong, J.; Ma, E.; Cao, Y.; Liu, R-S.; Chen, X. Nat. Commun. 2014, 5, 4312.   DOI
2 Pust, P.; Weiler, V.; Hecht, C.; Tucks, A.; Wochnik, A. S.; Henss, A.-K.; Wiechert, D.; Scheu, C.; Schmidt, P. J.; Schnick, W. Nat. Mater. 2014, 13, 891.   DOI
3 Daicho, H.; Iwasaki, T.; Enomoto, K.; Sasaki, Y.; Maeno, Y.; Shinomiya, Y.; Aoyagi, S.; Nishibori, E.; Sakata, M.; Sawa, H.; Matsuishi, S.; Hosono, H. Nat. Commun. 2012, 3, 1132.   DOI
4 Chen, W. T.; Sheu, H. S.; Liu, R. S.; Attfield, J. P. J. Am. Chem. Soc. 2012, 134, 8022.   DOI
5 Im, W. B.; George, N.; Kurzman, J.; Brinkley, S.; Mikhailovsky, A.; Hu, J.; Chmelka, B. F.; DenBaars, S. P.; Seshadri, R. Adv. Mater. 2011, 23, 2300.   DOI
6 Shang, M.; Li, C.; Lin, J. Chem. Soc. Rev. 2014, 43, 1372.   DOI
7 Recommendations ITU-R BT.2020-2, Parameter values for ultra-high definition television systems for production and international programme exchange, International Telecommunication Union, 2015.
8 Trupke, T.; Green, M. A.; Wurfel, P. J. Appl. Phys. 2002, 92, 1668.   DOI
9 Van der Ende, B. M.; Aarts, L.; Meijerink, A. Adv. Mater. 2009, 21, 3073.   DOI
10 Xie, R.-J.; Hirosaki, N.; Suehiro, T.; Xu, F.-F.; Mitomo, M. A. Chem. Mater. 2006, 18, 5578.   DOI
11 Brik, M. G.; Camerdello, S. J.; Srivastava, A. M. ECS J. Solid State Sci. Technol. 2015, 4, R39.
12 Wang, B.; Lin, H.; Xu, J.; Chen, H.; Wang, Y. ACS Appl. Mater. Interfaces 2014, 6, 22905.   DOI
13 Brik, M. G.; Srivastava, A. M.; J. Lumin. 2013, 133, 69.   DOI
14 Liang, S.; Shang, M.; Lian, H.; Li, K.; Zhang, Y.; Lin, J.; J. Mater. Chem. 2016, 4, 6409.
15 Kresse, G.; Hafner, J. Phys. Rev. B. 1994, 49, 14251.   DOI
16 Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15.   DOI
17 Kresse, G.; Furthmuller, J. J. Phys. Rev. B. 1996, 54, 11169.   DOI
18 Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.   DOI
19 Monkhorst, H. J.; Pack, J. D. Phys. Rev. B. 1976, 13, 5188.   DOI
20 Blochl, P. E. Phys. Rev. B. 1994, 50, 17953.   DOI
21 Kresse, G.; Joubert, D. Phys. Rev. B. 1999, 59, 1758.
22 Kresse, G.; Hafner, J. Phys. Rev. B. 1993, 47, 558.   DOI
23 Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207.   DOI
24 Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. J. Chem. Phys. 2006, 125, 224106.   DOI
25 Vydrov, O. A.; Heyd, J.; Krukau, A. V.; Scuseria, G. E. J. Chem. Phys. 2006, 125, 074106.   DOI