Browse > Article
http://dx.doi.org/10.3740/MRSK.2011.21.12.644

Preparation and Luminescent Property of Eu3+-doped A3Al1-zInzO4F (A = Ca, Sr, Ba, z = 0, 0.1) Phosphors  

Kim, Yeo-Jin (Department of Engineering in Energy and Applied Chemistry, Silla University)
Park, Sang-Moon (Department of Engineering in Energy and Applied Chemistry, Silla University)
Publication Information
Korean Journal of Materials Research / v.21, no.12, 2011 , pp. 644-649 More about this Journal
Abstract
[ $A_{3-2x/3}Al_{1-z}In_{z}O_4F:Eu_x^{3+}$ ](A = Ca, Sr, Ba, x = -0.15, z = 0, 0.1) oxyfluoride phosphors were simply prepared by the solid-state method at $1050^{\circ}C$ in air. The phosphors had the bright red photoluminescence (PL) spectra of an $A_{3-2x/3}Al_{1-z}In_{z}O_4F$ for $Eu^{3+}$ activator. X-ray diffraction (XRD) patterns of the obtained red phosphors were exhibited for indexing peak positions and calculating unit-cell parameters. Dynamic excitation and emission spectra of $Eu^{3+}$ activated red oxyfluoride phosphors were clearly monitored. Red and blue shifts gradually occurred in the emission spectra of $Eu^{3+}$ activated $A_3AlO_4F$ oxyfluoride phosphors when $Sr^{2+}$ by $Ca^{2+}$ and $Ba^{2+}$ ions were substituted, respectively. The concentration quenching as a function of $Eu^{3+}$ contents in $A_{3-2x/3}AlO_4F:Eu^{3+}$ (A = Ca, Sr, Ba) was measured. The interesting behaviors of defect-induced $A_{3-2x/3}Al_{1-z}In_{z}O_{4-{\alpha}}F_{1-{\delta}}$ phosphors with $Eu^{3+}$ activator are discussed based on PL spectra and CIE coordinates. Substituting $In^{3+}$ into the $Al^{3+}$ position in the $A_{3-2x/3}AlO_4F:Eu^{3+}$ oxyfluorides resulted in the relative intensity of the red emitted phosphors noticeably increasing by seven times.
Keywords
oxyfluoride; $Eu^{3+}$ activator; concentration quenching; defect-induced phosphor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Shionoya and W. H. Yen, Phosphor handbook, p. 840, CRC Press, USA (1998).
2 H. E. Hoefdraad, J. Solid State Chem., 15, 175 (1975).   DOI   ScienceOn
3 M. Buijs, A. Meyerink and G. Blasse, J. Lumin., 37, 9 (1987).   DOI   ScienceOn
4 I. P. Roof, M. D. Smith, S. Park and H.-C. zur Loye, J. Am. Chem. Soc., 131, 4202 (2009).   DOI   ScienceOn
5 S. Park and T. Vogt, J. Am. Chem. Soc., 132, 4516 (2010).   DOI   ScienceOn
6 S. Park and T. Vogt, J. Phys. Chem. C, 114, 11576 (2010).   DOI   ScienceOn
7 A. K. Prodjosantoso, B. J. Kennedy, T. Vogt and P. M. Woodward, J. Solid State Chem., 172, 89 (2003).   DOI   ScienceOn
8 S. Park, J. Lumin., 132, 875 (2012).   DOI   ScienceOn
9 H. Li, S. Zhang, S. Zhou, X. Cao and Y. Zheng, J. Phys. Chem. C, 113, 13115 (2009).   DOI   ScienceOn
10 J. Huang, L. Zhou, Z. Wang, Y. Lan, Z. Tong, F. Gong, J. Sun and L. Li, J. Alloy. Comp., 487, L5 (2009).   DOI   ScienceOn
11 B. Siritanaratkul, K. Maeda, T. Hisatomi and K. Domen, ChemSusChem, 4, 74 (2011).   DOI   ScienceOn
12 M. Nazarov and C. Yoon, J. Solid State Chem., 179, 2529 (2006).   DOI   ScienceOn
13 J. Nayak, S. Kimura and S. Nozaki, J. Lumin., 129, 12 (2009).   DOI   ScienceOn
14 J. Jeong, M. Jayasimhadri, H. S. Lee, K. Jang, S. S. Yi, J. H. Jeong and C. Kim, Phys. B Condens. Matter, 404, 2016 (2009).   DOI   ScienceOn