• Title/Summary/Keyword: phosphor

Search Result 1,147, Processing Time 0.027 seconds

Preparation and Luminescence Properties of Spherical Sr4Al14O25:Eu2+ Phosphor Particles by a Liquid Synthesis (액상법을 이용한 구상의 Sr4Al14O25:Eu2+ 형광체의 합성 및 발광 특성)

  • Lee, Jeong;Choi, Sungho;Nahm, Sahn;Jung, Ha-Kyun
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.351-356
    • /
    • 2014
  • A spherical $Sr_4Al_{14}O_{25}:Eu^{2+}$ phosphor for use in white-light-emitting diodes was synthesized using a liquid-state reaction with two precipitation stages. For the formation of phosphor from a precursor, the calcination temperature was $1,100^{\circ}C$. The particle morphology of the phosphor was changed by controlling the processing conditions. The synthesized phosphor particles were spherical with a narrow size-distribution and had mono-dispersity. Upon excitation at 395 nm, the phosphor exhibited an emission band centered at 497 nm, corresponding to the $4f^65d{\rightarrow}4f^7$ electronic transitions of $Eu^{2+}$. The critical quenching-concentration of $Eu^{2+}$ in the synthesized $Sr_4Al_{14}O_{25}:Eu^{2+}$ phosphor was 5 mol%. A phosphor-converted LED was fabricated by the combination of the optimized spherical phosphor and a near-UV 390 nm LED chip. When this pc-LED was operated under various forward-bias currents at room temperature, the pc-LED exhibited a bright blue-green emission band, and high color-stability against changes in input power. Accordingly, the prepared spherical phosphor appears to be an excellent candidate for white LED applications.

A Study of False Contour Noise in Moving Images through Consideration of the Phosphor Decay Time of AC PDP

  • Jeong, Dong-Cheol;Moon, Cheol-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.12-17
    • /
    • 2007
  • The dynamic false contour noise was analyzed with consideration for the phosphor decay time of an ac PDP by computer simulation based on the measurement of the 1/10 phosphor decay times of the primary colors red, green and blue at the main wavelengths of each phosphor. The noise level of dynamic false contour is strongly dependent on phosphor decay time. The noise level decreases incrementally with the phosphor decay time, whereas the noise width increases. The moving velocity of an object does not affect the noise level. The entire experiment was performed under the condition of 8 subfields ADS driving scheme, 2.5[${\mu}sec$] scan speed, and 5[${\mu}sec$] sustain period with VGA grade panel.

Relation of Luminance by Insulator and Phosphor Layer with Thin Type (형광층 및 절연층의 두께에 의한 휘도특성)

  • 박수길;조성렬;손원근;박대희;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.85-88
    • /
    • 1998
  • Light-emitting diode(LEDs), diode arrays, and phosphor display panels are finding increased use in a variety of commercial applications. Present and anticipated application of these devices include solid state indicator(e.g., digital clocks, meter readout) and display systems(e.g., instrument panels, TV display), the application being determined by the light -output capability and size availability(cost) of the particular device. In this work, Phosphor based on ZnS:Cu are used. Relation by luminance with the thickness of insulating layer and phosphor layer are discussed. Increased thickness of insulating layer are stable on voltage to 300V. By considering thickness and voltage, optimal structure and thickness are investigated. Also in order to maximize even surface emission, various sieving process are introduced. Very similar phosphor particle size is selected. Luminance by various wave intensity is also investigated. 150cd/m$^2$ luminance are investigated in stable voltage and frequency.

  • PDF

Thermal degradation properties of blue emitting phosphor particles prepared by the spray pyrolysis for PDP (분무열분해공정에서 제조된 PDP용 청색형광체의 열화특성)

  • Kang, Yun-Chan;Lee, Dong-Youl;Park, Hee-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1060-1062
    • /
    • 2002
  • Spherical and dense BAM phosphor particles were prepared by spray pyrolysis. The key idea of dense BAM particles is to lead gelation in droplets, which was successfully achieved by using the aluminum polycation as the precursor solution for the spray pyrolysis. The BAM phosphor particles prepared by spraying the aluminum polycation solution have completely spherical shape and dense structure. When directly applied to make phosphor film on the glass by the screen-printing method, the prepared spherical BAM phosphor particles showed better packing density and surface morphology than that of commercial one, which has irregular shape and large particle size. It was also found that the thermal degradation in the photoluminescence intensity for dense and spherical BAM particles was less than that of commercial one.

  • PDF

Luminescence behaviour of rare earth doped alkaline earth aluminates synthesized by combustion method (연소법에 의한 rare earth doped doped alkaline earth aluminates 형광체의 발광특성)

  • Jung, Young-Ho;Park, Jin-Won;Park, Jo-Yong;Khatkar, S.P.;Taxak, V.B.;Myung, Kwang-Shik;Han, Sang-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.581-584
    • /
    • 2002
  • A new method for the preparation of lanthanide ions activated strontium aluminates phosphor by combustion method has been proposed. Combustion method consist of the redox reactions between the respective metal nitrates and urea in a preheated funace at $500^{\circ}C$. The luminescence behavior of the phosphor was studied and compared with corresponding phosphor prepared by conventional method. Effect of $Mg^{2+}$ ion concentration in strontium aluminate phosphor was investigated and the maximum luminescence of about $100cd/m^2$ was obtained. This method gave better brightness and small size to the phosphor than made by conventional method.

  • PDF

A Study on Powder Electroluminescent Device through Structure and Thickness Variation (구조 및 두께 변화에 따른 후막 전계 발광소자에 관한 연구)

  • 오주열;정병선;이종찬;박대희
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.9-11
    • /
    • 1998
  • A phenomenon of electroluminescent radiate as electric field applied in the phosphor, in this paper, we produced the Powder Electroluminescent Device(PELD) which was changing the structure and the thickness of phosphor and insulator for realization of the PELD with high brightness. We made PELD with structure that is WK-1(ITO film/Phosphor/Insulator/Electrode), WK-2(ITO film/Phosphor/Insulator/Electro de), WK-3(ITO film/Phosphor/Insulator/Electrode), WK-4(ITO film/Phosphor+Insulator/ Electrode). The property of the produced PELD are analyzed by measuring the spectrum which electrical and optical property, the brightness and the transferred charge density. In this result, the structure of WK-4 have good luminescence property than others, it's effective thickness is 60${\mu}{\textrm}{m}$. At 100V 400Hz, High brightness of 2700cd/m2 was performed.

  • PDF

Effect of Yellow Phosphor on Characteristics of White Light Emitting Diode (백색 발광다이오드의 특성에 대한 황색 형광체의 영향)

  • Chang, Ho-Jung;Son, Chang-Sik;Hur, Jae-Sung
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.103-106
    • /
    • 2007
  • We have investigated the optical and electrical properties of surface mounted white light emitting diode (LED) chips prepared by using yellow phosphors on the blue LED chip. The yellow phosphor mixed with transparent epoxy was coated on the prepared LED chip. The optimum mixing conditions with epoxy and yellow phosphor is obtained at the mixing ratio of epoxy:yellow phosphor = 97:3 wt%. The maximum luminance and light emitting efficiency are above $80,000cd/m^2$ and 23.2 lm/W, respectively, at the bias voltage of 2.9 V. There was no distinct change in the luminance strength with changing of the yellow phosphor ratios. The current of the white LED chip is about 30 mA at 2.9 V.

Luminescence Characteristics of Blue and Yellow Phosphor for Near-Ultraviolet (자외선 여기용 청색 및 황색 형광체의 발광특성)

  • Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Kyung-Nam;Kim, Chang-Hae;Kim, Ho-Kun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.304-308
    • /
    • 2006
  • We have synthesized a $Eu^{2+}-activated\;Sr_3MgSi_2O_8$ blue phosphor and $(Sr,Ba)_2SiO_4$ yellow phosphor and prepared white LEDs by combining these phosphors with a InGaN UV LED chip. Three distinct emission bands from the InGaN-based LED and the two phosphors are clearly observed at 405 nm, 460 nm and at around 560 nm, respectively. The 405 nm emission band is due to a radiative recombination from a InGaN active layer. This blue emission was used as an optical transition of the $Sr_3MgSi_2O_8:Eu$ blue phosphor and $(Sr,Ba)_2SiO_4:Eu$ yellow phosphor. The 460 nm and 560 nm emission band is ascribed to a radiative recombination of $Eu^{2+}$ impurity ions in the $Sr_3MgSi_2O_8:Eu$ and $(Sr,Ba)_2SiO_4$ host matrix. As a consequence of a preparation of UV White LED lamp using the $Sr_3MgSi_2O_8:Eu$ blue phosphor and $(Sr,Ba)_2SiO_4:Eu$ yellow phosphor, the highest luminescence efficiency was obtained at the ration of epoxy/two phosphor (1/0.2361). At this time, the CIE chromaticity was CIE x = 0.3140, CIE y = 0.3201 and CCT (6500 K).

Synthesis and Characterization of Core-Shell Silica-Phosphor Nanoparticles via Sol-Gel Process (Sol-gel 법을 이용한 코어-쉘 실리카-형광체의 제조 및 특성평가)

  • Shin, Weon Ho;Kim, Seyun;Jeong, Hyung Mo
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.12-18
    • /
    • 2018
  • Cost-effective functional phosphor nanoparticles are prepared by introducing low-cost $SiO_2$ spheres to rare-earth phosphor ($YVO_4:Eu^{3+}$, $YVO_4:Er^{3+}$, and $YVO_4:Nd^{3+}$) shells using a sol-gel synthetic method. These functional nanoparticles are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and general photoluminescence spectra. The $SiO_2$ sphere occupying the interior of the conventional phosphor is advantageous in significantly reducing the cost of expensive rare-earth phosphor nanoparticles. The sol-gel process facilitates the core-shell structure formation; the rare-earth shell phosphor has strong interactions with chelating agents on the surfaces of $SiO_2$ nanoparticles and thus forms layers of several nanometers in thickness. The photoluminescence wavelength is simply tuned by replacing the active materials of $Eu^{3+}$, $Er^{3+}$, and $Nd^{3+}$. Moreover, the photoluminescent properties of the core-shell nanoparticles can be optimized by manipulating the specific contents of active materials in the phosphors. Our simple approach substitutes low-cost $SiO_2$ for expensive rare-earth-based phosphor materials to realize cost-effective phosphor nanoparticles for various applications.

Effects of Preparation Conditions in the Spray Pyrolysis on the Characteristics of Ca8Mg(SiO4)4Cl2:Eu2+ Phosphor (분무열분해 공정의 제조 조건이 Ca8Mg(SiO4)4Cl2:Eu2+ 형광체 특성에 미치는 영향)

  • Han, Jin-Man;Koo, Hye-Young;Lee, Sang-Ho;Kang, Yun-Chan
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.92-97
    • /
    • 2008
  • In spray pyrolysis, the effects of the preparation temperature, flow rate of the carrier gas and concentration of the spray solution on characteristics such as the morphology, size, and emission intensity of $Ca_8Mg(SiO_4)_4Cl_2:Eu^{2+}$ phosphor powders under long-wavelength ultraviolet light were investigated. The phosphor powders obtained post-treatment had a range of micron sizes with regular morphologies. However, the composition, crystal structure and photoluminescence intensity of the phosphor powders were affected by the preparation conditions of the precursor powders. The $Ca_8Mg(SiO_4)_4Cl_2:Eu^{2+}$ phosphor powders prepared at temperatures that were lower and higher than $700^{\circ}C$ had low photoluminescence intensities due to deficiencies related to the of Cl component. The phosphor powders with the deficient Cl component had impurity peaks of $Ca_2SiO_4$. The optimum flow rates of the carrier gas in the preparation of the $Ca_8Mg(SiO_4)_4Cl_2:Eu^{2+}$ phosphor powders with high photoluminescence intensities and regular morphologies were between 40 and 60 l/minute. Phosphor powders prepared from a spray solution above 0.5 M had regular morphologies and high photoluminescence intensities.