Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.7.351

Preparation and Luminescence Properties of Spherical Sr4Al14O25:Eu2+ Phosphor Particles by a Liquid Synthesis  

Lee, Jeong (Advanced Materials Division, Korea Research Institute of Chemical Technology)
Choi, Sungho (Advanced Materials Division, Korea Research Institute of Chemical Technology)
Nahm, Sahn (Korea University)
Jung, Ha-Kyun (Advanced Materials Division, Korea Research Institute of Chemical Technology)
Publication Information
Korean Journal of Materials Research / v.24, no.7, 2014 , pp. 351-356 More about this Journal
Abstract
A spherical $Sr_4Al_{14}O_{25}:Eu^{2+}$ phosphor for use in white-light-emitting diodes was synthesized using a liquid-state reaction with two precipitation stages. For the formation of phosphor from a precursor, the calcination temperature was $1,100^{\circ}C$. The particle morphology of the phosphor was changed by controlling the processing conditions. The synthesized phosphor particles were spherical with a narrow size-distribution and had mono-dispersity. Upon excitation at 395 nm, the phosphor exhibited an emission band centered at 497 nm, corresponding to the $4f^65d{\rightarrow}4f^7$ electronic transitions of $Eu^{2+}$. The critical quenching-concentration of $Eu^{2+}$ in the synthesized $Sr_4Al_{14}O_{25}:Eu^{2+}$ phosphor was 5 mol%. A phosphor-converted LED was fabricated by the combination of the optimized spherical phosphor and a near-UV 390 nm LED chip. When this pc-LED was operated under various forward-bias currents at room temperature, the pc-LED exhibited a bright blue-green emission band, and high color-stability against changes in input power. Accordingly, the prepared spherical phosphor appears to be an excellent candidate for white LED applications.
Keywords
$Sr_4Al_{14}O_{25}:Eu^{2+}$; co-precipitation; shape control;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. S. Jang, W. H. Kim, Y. R. Kang, S. B. Song, J. P. Kim and J. H. Kim, Int. J. Appl. Ceram. Tech., 10(4), 617 (2013).   DOI
2 W. Minquan, D. Wang and L. Guanglie, Mater. Sci. Eng. B., 57(1), 18 (1998).   DOI
3 P. Schlotter, R. Schmidt and J. Schneider, Appl. Phys. Mater. Sci. Process., 64(4), 417 (1997).   DOI   ScienceOn
4 S. Lee and S. Y. Seo, J. Electrochem. Soc., 149(11), J85 (2002).   DOI
5 Y. Uchida and T. Taguchi, Opt. Eng., 44(12), 124003 (2005).   DOI
6 G. Blasse, J. Solid State Chem., 62(2), 207 (1986).   DOI   ScienceOn
7 T. Katsumata, K. Sasajima, T. Nabae, S. Komuro and T. Morikawa, J. Am. Ceram. Soc., 81(2), 413 (1998).
8 F. C. Palilla, A. K. Levine and M. R. Tomkus, J. Electrochem. Soc., 115(6), 642 (1968).   DOI
9 B. Smets, J. Rutten, G. Hoeks and J. Verlijsdonk, J. Electrochem. Soc., 136(7), 2119 (1989).   DOI   ScienceOn
10 V. Abbruscato, J. Electrochem. Soc., 118(6), 930 (1971).   DOI
11 W. R. Liu, C. C. Lin, Y. C. Chiu, Y. T. Yeh, S. M. Jang and R. S. Liu, J. Chem. Chem. Eng., 5(7), 638 (2011).
12 D. Jia, Y. Wang, X. Guo, K. Li, Y. K. Zou and W. Jia, J. Electrochem. Soc., 154(1), J1 (2007).   DOI   ScienceOn
13 D. Jia, Electrochem. Solid State Lett., 9(10), H93 (2006).   DOI
14 M. Capron, F. Fayon, D. Massiot and A. Douy, Chem. Mater., 15(2), 575 (2003).   DOI
15 C. Chang, Z. Yuan and D. Mao, J. Alloy. Comp., 415(1), 220 (2006).   DOI
16 T. Nishida, H. Saito and N. Kobayashi, Appl. Phys. Lett., 79(6), 711 (2001).   DOI   ScienceOn
17 J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho and G. C. Kim, Appl. Phys. Lett., 84(15), 2931 (2004).   DOI   ScienceOn
18 A. L. N. Stevels and A. D. M. S. Pauw, J. Electrochem. Soc., 123(5), 691 (1976).   DOI   ScienceOn
19 C. -S. Fang and Y. -W. Chen, Mater. Chem. Phys., 78(3), 739 (2003).   DOI   ScienceOn
20 D. Wang, M. Wang and G. Lu, J. Mater. Sci., 34(20), 4959 (1999).   DOI   ScienceOn
21 J. H. Jean and T. A. Ring, Colloid. Surface., 29(3), 273 (1988).   DOI   ScienceOn
22 H. K. Jung, D. W. Lee and Y. C. Park, Solid State Phenom., 124, 391 (2007).
23 D. Wang, Q. Yin, Y. Li and M. Wang, J. Lumin., 97(1), 1 (2002).   DOI   ScienceOn