Browse > Article
http://dx.doi.org/10.4150/KPMI.2018.25.1.12

Synthesis and Characterization of Core-Shell Silica-Phosphor Nanoparticles via Sol-Gel Process  

Shin, Weon Ho (Energy & Environment Division, Korea Institute of Ceramic Engineering & Technology)
Kim, Seyun (Materials Research Center Samsung Advanced Institute of Technology)
Jeong, Hyung Mo (Department of Nano Applied Engineering, Kangwon National University)
Publication Information
Journal of Powder Materials / v.25, no.1, 2018 , pp. 12-18 More about this Journal
Abstract
Cost-effective functional phosphor nanoparticles are prepared by introducing low-cost $SiO_2$ spheres to rare-earth phosphor ($YVO_4:Eu^{3+}$, $YVO_4:Er^{3+}$, and $YVO_4:Nd^{3+}$) shells using a sol-gel synthetic method. These functional nanoparticles are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and general photoluminescence spectra. The $SiO_2$ sphere occupying the interior of the conventional phosphor is advantageous in significantly reducing the cost of expensive rare-earth phosphor nanoparticles. The sol-gel process facilitates the core-shell structure formation; the rare-earth shell phosphor has strong interactions with chelating agents on the surfaces of $SiO_2$ nanoparticles and thus forms layers of several nanometers in thickness. The photoluminescence wavelength is simply tuned by replacing the active materials of $Eu^{3+}$, $Er^{3+}$, and $Nd^{3+}$. Moreover, the photoluminescent properties of the core-shell nanoparticles can be optimized by manipulating the specific contents of active materials in the phosphors. Our simple approach substitutes low-cost $SiO_2$ for expensive rare-earth-based phosphor materials to realize cost-effective phosphor nanoparticles for various applications.
Keywords
Silica nanoparticle; Phosphor; Sol-gel method; Core-shell; Luminescent property;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. Sen, A. Sebastianelli and I. J. Bruce: J. Am. Chem. Soc., 128 (2006) 7130.   DOI
2 D. H. Kang and J. H. Hong: J. Korean Soc. Manuf. Technol. Eng., 21 (2012) 15.
3 B. K. Gupta, D. Haranath, S. Saini, V. N. Singh and V. Shanker: Nanotechnology, 21 (2010) 1.
4 M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, J. Silver and M. J. Snowden: Langmuir, 17 (2001) 7145.   DOI
5 X. Brokmann, J. P. Hermier, G. Messin, P. Desbiolles, J. P. Bouchaud and M. Dahan: Phys. Rev. Lett., 90 (2003) 120601.
6 E. Loh: Phys. Rev., 147 (1966) 332.   DOI
7 K. Y. Jung and W. H. Kim: Korean Chem. Eng. Res., 53 (2015) 620.   DOI
8 A. K. Levine and F. C. Palilla: Appl. Phys. Lett., 5 (1964) 118.   DOI
9 O. Lehmann, K. Kompe and M. Haase: J. Am. Chem. Soc., 126 (2004) 14935.
10 M. Ocana, W. P. Hsu and E. Matijevic: Langmuir, 7 (1991) 2911.   DOI
11 W. P. Hsu, R. C. Yu and E. J. Matijevic: J. Colloid Interface Sci., 156 (1993) 56.   DOI
12 M. Yu, J. Lin and J. Fang: Chem. Mater., 17 (2005) 1783.   DOI
13 W. Stober, A. Fink and E. J. Bohn: J. Colloid Interface Sci., 26 (1968) 62.   DOI
14 K. F. Schrum, J. M. Lancaster, S. E. Johnston and S. D. Gilman: Anal. Chem., 72 (2000) 4317.   DOI
15 B. M. Reddy, P. Lakshmanan and A. Khan: J. Phys. Chem. B, 108 (2004) 16855.   DOI
16 L. Wu, J. C. Yu, L. Z. Zhang, X. C. Wang and S. K. Li: J. Solid State Chem., 177 (2004) 3666.   DOI
17 A. Huignard, T. Gacoin and J. P. Boilot: Chem. Mater., 12 (2000) 1090.   DOI
18 P. R. Diamente, M. Raudsepp and F. C. J. M. van Veggel: Adv. Funct. Mater., 17 (2007) 363.   DOI
19 M. Ryo, Y. Wada, T. Okubo, Y. Hasegawa and S. J. Yanagida: J. Phys. Chem. B, 107 (2003) 11302.   DOI