• Title/Summary/Keyword: phosphate solubilization

Search Result 111, Processing Time 0.026 seconds

Isolation and Characterization of a Novel Bacterium, Bacillus subtilis HR-1019, with Insoluble Phosphates Solubilizing Activity (인산가용화 활성을 갖는 바실러스 서브틸리스 HR-1019 분리와 특성)

  • Lee, Yong-Suk;Park, Dong-Ju;Kim, Jae Hoon;Kim, Hyeong Seok;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.242-248
    • /
    • 2013
  • The objective of this study was to develop a mineral phosphate-solubilizing bacterium as a biofertilizer. A mineral phosphate-solubilizing bacterium HR-1019 was isolated from cultivated soils. It was identified as Bacillus subtilis by 16S rDNA analysis. The phosphate-solubilizing activities of the HR-1019 strain against three types of insoluble phosphate, hydroxyapatite, tri-calcium phosphate, and aluminum phosphate were quantitatively determined. When 5% of glucose concentration was used as a carbon source, the strain showed marked mineral phosphate-solubilizing activity. Mineral phosphate solubilization was directly related to pH drop in the culture solution of the strain. The pathogenic activity and antifungal effects of the HR-1019 strain were measured inclear zones formed in PDA media.

Cold-Adapted and Rhizosphere-Competent Strain of Rahnella sp. with Broad-Spectrum Plant Growth-Promotion Potential

  • Vyas, Pratibha;Joshi, Robin;Sharma, K.C.;Rahi, Praveen;Gulati, Ashu;Gulati, Arvind
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1724-1734
    • /
    • 2010
  • A phosphate-solubilizing bacterial strain isolated from Hippophae rhamnoides rhizosphere was identified as Rahnella sp. based on its phenotypic features and 16S rRNA gene sequence. The bacterial strain showed the growth characteristics of a cold-adapted psychrotroph, with the multiple plant growth-promoting traits of inorganic and organic phosphate solubilization, 1-aminocyclopropane-1-carboxylate-deaminase activity, ammonia generation, and siderophore production. The strain also produced indole-3-acetic acid, indole-3-acetaldehyde, indole-3-acetamide, indole-3-acetonitrile, indole-3-lactic acid, and indole-3-pyruvic acid in tryptophan-supplemented nutrient broth. Gluconic, citric and isocitric acids were the major organic acids detected during tricalcium phosphate solubilization. A rifampicin-resistant mutant of the strain exhibited high rhizosphere competence without disturbance to the resident microbial populations in pea rhizosphere. Seed bacterization with a charcoal-based inoculum significantly increased growth in barley, chickpea, pea, and maize under the controlled environment. Microplot testing of the inoculum at two different locations in pea also showed significant increase in growth and yield. The attributes of cold-tolerance, high rhizosphere competence, and broad-spectrum plant growth-promoting activity exhibited the potential of Rahnella sp. BIHB 783 for increasing agriculture productivity.

Co-inoculation of Burkholderia cepacia and Alcaligenes aquatilis enhances plant growth of maize (Zea mays) under green house and field condition

  • Pande, Amit;Pandey, Prashant;Kaushik, Suresh
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.196-210
    • /
    • 2017
  • The synergistic effect on phosphate solubilization of single- and co-inoculation of two phosphate solubilizing bacteria, Burkholderia cepacia (C1) and Alcaligenes aquatilis (H6), was assessed in liquid medium and maize plants. Co-inoculation of two strains was found to release the highest content of soluble phosphorus (309.66 ?g/mL) into the medium, followed by single inoculation of B. cepacia (305.49 ?g/mL) and A. aquatilis strain (282.38 ?g/mL). Based on a plant growth promotion bioassay, co-inoculated maize seedlings showed significant increases in shoot height (75%), shoot fresh weight (93.10%), shoot dry weight (84.99%), root maximum length (55.95%), root fresh weight (66.66%), root dry weight (275%), and maximum leaf length (81.53%), compared to the uninoculated control. In a field experiment, co-inoculated maize seedlings showed significant increases in cob length (136.92%), number of grain/cob (46.68%), and grain weight (67.46%) over control. In addition, single inoculation of maize seedlings also showed improved result over control. However, there was no significant difference between single inoculation of either bacterial strains and co-inoculation of these two bacterial strains in terms of phosphate solubilization index, phosphorous release, pH of the media, and plant growth parameters. Thus, single inoculation and co-inoculation of these bacteria could be used as biofertilizer for improving maize growth and yield.

Conditions for Soluble Phosphate Production by Environment-Friendly Biofertilizer Resources, Pseudomonas fluorescens (환경친화적 미생물비료 자원 Pseudomonas fluorescens RAF15에 의한 가용성 인산 생산에 영향을 미치는 조건)

  • Park, Ki-Hyun;Park, Geun-Tae;Kim, Sung-Man;Lee, Chung-Yeol;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1033-1037
    • /
    • 2008
  • The effects of inorganic salts, inoculum concentration, aeration rate and shaking speed on insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 were investigated. Soluble phosphate production was dependent on the presence of $MgCl_2{\cdot}6H_2O$ and $MgSO_4{\cdot}7H_2O$ in the medium. Supplementation of medium with 0.01% $CaCl_2{\cdot}2H_2O$ and 0.01% NaCl slightly increased soluble phosphate production. The optimal medium compositions for the solubilization of insoluble phosphate by P. fluorescens RAF15 were 1.5% glucose, 0.005% urea, 0.3% $MgCl_2{\cdot}6H_2O$, 0.01% $MgSO_4{\cdot}7H_2O$, 0.01% $CaCl_2{\cdot}2H_2O$ and 0.01% NaCl, respectively. Optimal inoculum concentration was 2.0%(v/v). Maximum soluble phosphate production was obtained with 20-50 ml/250-ml flask and 200 rpm of shaking speed, respectively. The addition of EDTA decreased cell growth and soluble phosphate production.

Plant Growth Promotion in Soil by Some Inoculated Microorganisms

  • Jeon, Jong-Soo;Lee, Sang-Soo;Kim, Hyoun-Young;Ahn, Tae-Seok;Song, Hong-Gyu
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.271-276
    • /
    • 2003
  • The inoculation of some microorganisms into a microcosm containing soil from a barren lakeside area at Lake Paro in Kangwon-do enhanced plant growth significantly. The direct and viable counts of soil bacteria and soil microbial activities measured by electron transport system assay and fluorescein diacetate hydrolysis assay were higher in inoculated soil. The plant growth promoting effect of this inoculation may be caused by phytohormone production and the solubilization of insoluble phosphates by the inoculated bacteria. Three inoculated strains of Pseudomonas fluorescens produced several plant growth promoting phytohormones, including indole-3-acetic acid (auxin), which was confirmed by thin layer chromatography and GC/MS. P. fluorescens strain B16 and M45 produced 502.4 and 206.1 mg/l of soluble phosphate from Ca3(PO4)2 and hydroxyapatite, respectively. Bacillus megaterium showed similar solubilization rates of insoluble phosphates to those of Pseudomonas spp. We believe that this plant growth promoting capability may be used for the rapid revegetation of barren or disturbed land.

Improvement of the Phosphate Solubilization Microorganism by the Introduction of Glucose Dehydrogenase Gene into Aeromonas hydrophila DA33. (Glucose dehydrogenase 유전자의 Aeromonas hydrophila DA33으로의 도입에 따른 인산가용화 균주의 개량)

  • Park, In-Hye;Song, Ok-Ryul;Lee, Yong-Seok;Kang, Ui-Gum;Choi, Si-Lim;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.878-883
    • /
    • 2008
  • Aeromonas hydrophila DA33 was isolated from cultivated soils as a bacteria having high abilities to solubilize inorganic phosphate. Glucose dehydrogenase gene (gdh) was cloned from Escherichia coli. The recombinant plasmid, pGHS containing glucose dehydrogenase gene was introduced into A. hydrophila DA33 in order to improve the activity of phosphate-solubilizing. The transformant harboring the gdh gene, A. hydrophila pGHS/DA33 increased enzyme activity. The strain also increased the gluconic acid generation that was effective for phosphate solubilization. It was possible that the strain containing pGHS produced higher solubilized phosphate with tri-calcium phosphate as the unique (P) source, in comparison with that of wild type without plasmid. These results suggest that the strain, A. hydrophila pGHS/DA33 is expected as effective biofertilizer for phosphate solubilization.

Isolation, Identification and Physiological Characteristics of Biofertilizer Resources, Insoluble Phosphate-Solubilizing Bacteria (미생물비료 생물자원인 불용성인산 가용화 세균의 분리, 동정 및 생리적 특성)

  • 손홍주
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.51-55
    • /
    • 2003
  • To develop environment-friendly biofertilizer solubilizing insoluble phosphates, a bacterium possessing a high ability to solubilize $Ca_{3}(PO_{4})_{2}$) was isolated from the rhizosphere of peas. On the basis of its morphological, cultural, physiological characteristics, and Vitek analysis, this bacterium was identified as Pantoea agglomerans. The optimal medium composition and cultural conditions for the solubilization of insoluble phosphate by P. agglomerans R-38 were 3% of glucose.0.1% of TEX>$NH_{4}NO_{3}$, 0.02% of $MgSO_{4}\cdot\7H_{2}O$, and 0.06% of $CaCl_{2}\cdot\2H_{2}O$ along with initial pH 7.5 at $30^{\circ}C$. The highest soluble phosphate production under optimum condition was 898 mg/L after 5 days of cultivation. The solubilization of insoluble phosphate was associated with a drop in the pH of the culture medium. The strain produced soluble phosphate to the culture broth with the concentrations of 698 mg/L against CaHPO$_4$, 912 mg/L against hydroxyapatite, 28 mg/L against $FePO_{4}\cdot\4H_{2}O$, and 19 mg/L against $AIPO_{4}$, respectively.

Solubilization of Insoluble Phosphates by Penicillium sp. GL-101 Isolated from Soil (토양에서 분리한 Penicillium sp. GL-101에 의한 난용성 인산염의 가용화)

  • Choi, Myoung-Chul;Chung, Jong-Bae;Sa, Tong-Min;Lim, Sun-Uk;Kang, Sun-Chul
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.329-333
    • /
    • 1997
  • Phosphate solubilizing microorganisms (1,000 bacteria and 200 fungi) were isolated from soil around Kyungnam and Kyungbook regions using potato dextrose agar-calcium phosphate medium. A fungus with the greatest phosphate solubilizing activity was selected and identified to Penicillium sp. GL-101, based on the morphological characteristics of conidiophore and conidia; flask shape of phialide, simple branching type of conidiophore, and columnar shape of conidial head, in malt extract agar and potato dextrose agar media. The optimum temperature and initial pH to solubilize rock phosphate in potato dextrose broth-rock phosphate medium were $25^{\circ}C$ and pH 7.5, respectively. In these optimum conditions, phosphate solubilizing activities of Penicillium sp. GL-101 against four types of insoluble phosphate: tricalcium-phosphate, aluminium phosphate, hydroxyapatite and rock phosphate, were quantitatively determined. As results, this fungus highly discharged free phosphates to the culture broth with the concentrations of 1,152 ppm against tricalcium-phosphate, 565 ppm against rock phosphate, 292 ppm against aluminium phosphate, and 217 ppm against hydroxyapatite, respectively.

  • PDF

Solubilization of Hardly Soluble Phosphates and Growth Promotion of Maize (Zea mays L.) by Penicillium oxalicum Isolated from Rhizosphere

  • SHIN WANSIK;RYU JEOUNGHYUN;CHOI SEUNGJU;KIM CHUNGWOO;GADAGI RAVI;MADHAIYAN MUNUSAMY;SESHADRI SUNDARAM;CHUNG JONGBAE;SA TONGMIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1273-1279
    • /
    • 2005
  • Penicillium oxalicum strain CBPS-3F-Tsa, an efficient phosphate solubilizing fungus, was evaluated for its production of organic acid in vitro and effect of inoculation on the growth promotion of Maize under greenhouse conditions. The fungus solubilized 129.1, 118.8, and 54.1 mg P/1 of tricalcium phosphate [$Ca_{3}(PO_{4})_{2}$], aluminum phosphate ($A1PO_{4}$),and ferric phosphate ($FePO_{4}$), respectively, after 72 h of incubation. Malic acid, gluconic acid, and oxalic acid were detected in the flasks supplemented with various phosphate sources [240, 146, 145 mM/1 $A1PO_{4},\;FePO_{4},\;and\;Ca_{3}(PO_{4})_{2}$, respectively] together with a large amount of malic acid followed by the other two. The effects of inoculation of P. oxalicum CBPS-3F-Tsa on maize plants were studied under pot culture conditions. P. oxalicum CBPS-3F-Tsa was inoculated to maize plants alone or together with inorganic phosphates in the form of fused phosphates (FP) and rock phosphates (RP). Inoculation of P. oxalicum CBPS-3F-Tsa increased the plant growth and N and P accumulation in plants, compared with control plants, and also had positive effects when applied with RP. The results of this study show that the fungus P. oxalicum strain CBPS-3F-Tsa could solubilize different insoluble phosphates by producing organic acids, particularly malic acid, and also improved the efficiency of RP applied to maize plants.

Hydroxyapatite Solubilization and Organic Acid Production by Enterobacter agglomerans (인산염 가용화균 Enterobacter agglomerans에 의한 Hydroxyapatite 가동화와 유기산 생성)

  • Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.2
    • /
    • pp.189-195
    • /
    • 1997
  • A phosphate solubilizing bacterium (PSB) possessing a high ability to solubilize hydroxyapatite (HA) was isolated from the rhizosphere of wheat. The PSB markedly developed clear zones after inoculating for 36 hours at $30^{\circ}C$. This bacterium was identified as Enterobacter agglomerans through API 20E system and Biolog$^{TM}$ analysis. The values of similarity and distance coefficient from authentication trial of the strain were 0.656 and 4.79 respectively. High performance liquid chromatography (HPLC) of the products of this strain indicated that this strain excretes maily oxalic acid with som other organic acids. During the incubation period of E. agglomerans, the pH values showed an inverse correlation ($r^2=0.933^{**}$) with solubilization of inorganic phosphate. Acid phosphatase activity of the strain was 10-15 times greater than alkaline phosphatase activity. Alkaline phosphatase activity had almost constant near zero activity across time. The population of E. agglomerans greatly increased during the first day of inoculation ; however, it drastically decreased thereafter.

  • PDF