Browse > Article
http://dx.doi.org/10.4014/jmb.1007.07030

Cold-Adapted and Rhizosphere-Competent Strain of Rahnella sp. with Broad-Spectrum Plant Growth-Promotion Potential  

Vyas, Pratibha (Plant Pathology and Microbiology Laboratory, Hill Area Tea Science, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research)
Joshi, Robin (Biochemistry Laboratory, Hill Area Tea Science, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research)
Sharma, K.C. (Krishi Vigyan Kendra, CSK Himachal Pradesh Krishi Vishvavidyalaya)
Rahi, Praveen (Plant Pathology and Microbiology Laboratory, Hill Area Tea Science, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research)
Gulati, Ashu (Biochemistry Laboratory, Hill Area Tea Science, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research)
Gulati, Arvind (Plant Pathology and Microbiology Laboratory, Hill Area Tea Science, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.12, 2010 , pp. 1724-1734 More about this Journal
Abstract
A phosphate-solubilizing bacterial strain isolated from Hippophae rhamnoides rhizosphere was identified as Rahnella sp. based on its phenotypic features and 16S rRNA gene sequence. The bacterial strain showed the growth characteristics of a cold-adapted psychrotroph, with the multiple plant growth-promoting traits of inorganic and organic phosphate solubilization, 1-aminocyclopropane-1-carboxylate-deaminase activity, ammonia generation, and siderophore production. The strain also produced indole-3-acetic acid, indole-3-acetaldehyde, indole-3-acetamide, indole-3-acetonitrile, indole-3-lactic acid, and indole-3-pyruvic acid in tryptophan-supplemented nutrient broth. Gluconic, citric and isocitric acids were the major organic acids detected during tricalcium phosphate solubilization. A rifampicin-resistant mutant of the strain exhibited high rhizosphere competence without disturbance to the resident microbial populations in pea rhizosphere. Seed bacterization with a charcoal-based inoculum significantly increased growth in barley, chickpea, pea, and maize under the controlled environment. Microplot testing of the inoculum at two different locations in pea also showed significant increase in growth and yield. The attributes of cold-tolerance, high rhizosphere competence, and broad-spectrum plant growth-promoting activity exhibited the potential of Rahnella sp. BIHB 783 for increasing agriculture productivity.
Keywords
ACC-deaminase activity; indole derivatives; phosphate solubilization; organic acids; plant growth promotion; Rahnella sp.; rhizosphere competence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Son, H. J., G. T. Park, M. S. Cha, and M. S. Heo. 2006. Solubilization of insoluble inorganic phosphates by a novel salt and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Biores. Technol. 97: 204-210.   DOI   ScienceOn
2 Vyas, P., P. Rahi, and A. Gulati. 2009. Stress tolerance and genetic variability of phosphate-solubilizing fluorescent Pseudomonas from the cold desert of the trans-Himalayas. Microb. Ecol. 58: 425-434.   DOI   ScienceOn
3 Dey, R., K. K. Pal, D. M. Bhatt, and S. M. Chauhan. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol. Res. 159: 371-394.   DOI   ScienceOn
4 Gulati, A., P. Rahi, and P. Vyas. 2008. Characterization of phosphate-solubilizing fluorescent pseudomonads from rhizosphere of seabuckthorn growing in cold deserts of Himalayas. Curr. Microbiol. 56: 73-79.   DOI   ScienceOn
5 Kuklinsky-Sobrat, J., W. L. Araujo, R. Mendes, I. O. Geraldi, A. A. Pizzirani-Kleiner, and J. L. Azevedo. 2004. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol. 6: 1244-1251.   DOI   ScienceOn
6 Mishra, P. K., S. Mishra, G. Selvakumar, S. C. Bisht, J. K. Bisht, S. Kundu, and H. S. Gupta. 2008. Characterization of a psychrotolerant plant growth promoting Pseudomonas sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann. Microbiol. 58: 561-568.   DOI   ScienceOn
7 Glick, B. R., Z. Cheng, J. Czarny, and J. Duan. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 119: 329-339.   DOI   ScienceOn
8 Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265-270.   DOI   ScienceOn
9 Huang, H., H. Luo, Y. Wang, D. Fu, N. Shao, G. Wang, P. Yang, and B. Yao. 2008. A novel phytase from Yersinia rohdei with high phytate hydrolysis activity under low pH and strong pepsin conditions. Appl. Microbiol. Biotechnol. 80: 417-426.   DOI   ScienceOn
10 Idriss, E. E., O. Makarewicz, A. Farouk, K. Rosner, R. Greiner, H. Bochow, T. Richter, and R. Borriss. 2002. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant growth-promoting effect. Microbiology 148: 2097-2109.
11 Gulati, A., P. Vyas, P. Rahi, and R. C. Kasana. 2009. Plant growth promoting and rhizosphere competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of Himalayas. Curr. Microbiol. 58: 371-377.   DOI   ScienceOn
12 Berge, O., T. Heulin, W. Achouak, C. Richard, R. Bally, and J. Balandreau. 1991. Rahnella aquatilis, a nitrogen-fixing enteric bacterium associated with the rhizosphere of wheat and maize. Can. J. Microbiol. 37: 195-203.   DOI
13 Farajzadeh, D., N. Aliasgharzad, N. S. Bashir, and B. Yakhchali. 2010. Cloning and characterization of a plasmid-encoded ACC deaminase from an indigenous Pseudomonas fluorescens FY32. Curr. Microbiol. 61: 37-43.   DOI   ScienceOn
14 Fernandez, L. A., P. Zalba, M. A. Gomez, and M. A. Sagardoy. 2007. Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol. Fert. Soils 43: 805-809.   DOI   ScienceOn
15 Ge, S. M., L. Tao, and S. F. Chen. 2009. Expression and functional analysis of aminotransferase involved in indole-3-acetic acid biosynthesis in Azospirillum brasilense Yu62. Biochemistry 74: 81-84.
16 Duponois, R., M. Kisa, and C. Plenchette. 2006. Phosphate solubilizing potential of the nematophagous fungus Arthrobotrys oligospora. J. Plant Nutr. Soil Sci. 169: 280-282.   DOI   ScienceOn
17 Egamberdiyeva, D., D. Juraeva, L. Gafurova, and G. Hoflich. 2002. Promotion of plant growth of maize by plant growth promoting bacteria in different temperatures and soils. In E. van Santen (ed.). Making Conservation Tillage Conventional: Building a Future on 25 Years of Research. Special Report No. 1, Proceedings of the 25th Annual Southern Conservation Tillage Conference for Sustainable Agriculture, Auburn, AL. Alabama Agricultural Experiment and Auburn University, AL 36849, USA.
18 El-Hendawy, H. H., M. E. Osman, and N. M. Sorour. 2005. Biological control of bacterial spot of tomato caused by Xanthomonas campestris pv. vesicatoria by Rahnella aquatilis. Microbiol. Res. 160: 343-352.   DOI   ScienceOn
19 Bell, C. R., G. A. Dickie, and J. W. Y. F. Chan. 1995. Variable response of bacteria isolated from grapevine xylem to control grape crown gall disease in planta. Am. J. Enol. Vitic. 46: 499-508.
20 Cappuccino, J. C. and N. Sherman. 1992. Microbiology: A Laboratory Manual, pp. 125-179. Benjamin/Cummings Pub. Co., New York.
21 Castric, P. A. 1975. Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. Can. J. Microbiol. 21: 613-618.   DOI   ScienceOn
22 Chung, K. R., T. Shilts, U. Erturk, L. W. Timmer, and P. P. Uneg. 2003. Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol. Lett. 226: 23-30.   DOI   ScienceOn
23 Patel, D. K., G. Archana, and G. N. Kumar. 2008. Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Curr. Microbiol. 56: 168-174.   DOI   ScienceOn
24 Anandham, R., P. Indira Gandhi, M. Madhaiyan, and T. M. Sa. 2008. Potential plant growth promoting traits and bioacidulation of rock phosphate by thiosulfate oxidizing bacteria isolated from crop plants. J. Basic Microbiol. 48: 439-447.   DOI   ScienceOn
25 Bakker, A. W. and B. Schippers. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth reduction. Soil Biol. Biochem. 19: 452-458.
26 Behbahani, M. 2010. Investigation of biological behavior and colonization ability of Iranian indigenous phosphate solubilizing bacteria. Scientia Horticult. 124: 393-399.   DOI   ScienceOn
27 Vargas, F. R. D. and G. W. O'Hara. 2006. Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards. J. Appl. Microbiol. 100: 946-954.   DOI   ScienceOn
28 Park, K. H., C. Y. Lee, and H. J. Son. 2009. Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growthpromoting activities. Lett. Appl. Microbiol. 49: 222-228.   DOI   ScienceOn
29 Payne, S. M. 1994. Detection, isolation and characterization of siderophores. Methods Enzymol. 235: 329-344.   DOI
30 Penrose, D. M. and B. R. Glick. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth promoting rhizobacteria. Plant Physiol. 118: 10-15.   DOI   ScienceOn
31 Poonguzhali, S., M. Madhaiyan, and T. Sa. 2008. Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J. Microbiol. Biotechnol. 18: 773-777.   과학기술학회마을
32 Rodriguez, R., R. Fraga, T. Gonzalez, and Y. Bashan. 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth promoting bacteria. Plant Soil 287: 15-21.   DOI
33 Richardson, A. E. and P. A. Hadobas. 1997. Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can. J. Microbiol. 43: 509-516.   DOI   ScienceOn
34 Sarwar, M. and J. W. T. Frankenberger. 1994. Tryptophan dependent biosynthesis of auxins in soil. Plant Soil 160: 97-104.   DOI   ScienceOn
35 Jackson, M. L. 1973. Soil Chemical Analysis. Prentice Hall, New Delhi, India.
36 Sasser, M. 1990. Tracking a strain using the microbial identification system. Technical Note 102, MIS, Newark, DE.
37 Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 45-56.
38 Jacobson, B. C., J. J. Pasternak, and B. R. Glick. 1994. Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR 12-2. Can. J. Microbiol. 40: 1019-1025.   DOI   ScienceOn
39 Johri, J. K., S. Surange, and C. S. Nautiyal. 1999. Occurrence of salt, pH and temperature-tolerant phosphate-solubilizing bacteria in alkaline soils. Curr. Microbiol. 39: 89-93.   DOI   ScienceOn
40 Khan, A. A., G. Jilani, M. S. Akhtar, S. M. S. Naqvi, and M. Rasheed. 2009. Phosphorus solubilizing bacteria: Occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 1: 48-58.
41 Kim, K. Y., D. Jordan, and H. B. Krishnan. 1997. Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol. Lett. 153: 273-277.   DOI   ScienceOn
42 Krieg, N. R. and J. G. Holt. 1984. Bergey's Manual of Systematic Bacteriology, Vol. 1. Williams and Willkins, Baltimore
43 Kumar, K. V., S. Srivastava, N. Singh, and H. M. Behl. 2009. Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J. Hazard. Mater. 170: 51-57.   DOI   ScienceOn
44 Selvakumar, G., S. Kundu, P. Joshi, S. Nazim, A. D. Gupta, P. K. Mishra, and H. S. Gupta. 2008. Characterization of a coldtolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J. Microbiol. Biotechnol. 24: 955-960.   DOI   ScienceOn
45 Lugtenberg, B. J. J., L. Dekkers, and G. V. Bloemberg. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39: 461-490.   DOI   ScienceOn
46 Negi, Y. K., S. K. Garg, and J. Kumar. 2005. Cold tolerant fluorescent Pseudomonas isolates from Garhwal Himalayas as potential plant growth promoting and biocontrol agents in pea. Curr. Sci. 89: 2151-2156.
47 Vyas, P. and A. Gulati. 2009. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 9: 174.   DOI   ScienceOn
48 Wei, H. L. and L. Q. Zhang. 2006. Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24. Antonie van Leeuwenhoek 89: 267-280.   DOI   ScienceOn
49 Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
50 Selvakumar, G., M. Mohan, M. S. Kundu, A. D. Gupta, P. Joshi, S. Nazim, and H. S. Gupta. 2008. Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett. Appl. Microbiol. 46: 171-175.
51 Selvakumar, G., S. Kundu, P. Joshi, A. D. Gupta, and H. S. Gupta. 2009. Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas. Indian J. Microbiol. 50: 50-56.
52 Selvakumar, G., P. Joshi, S. Nazim, P. K. Mishra, J. K. Bisht, and H. S. Gupta. 2009. Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64: 239-245.   DOI   ScienceOn
53 Tsavkelova, E. A., T. A. Cherdyntseva, S. G. Botina, and A. I. Netrusov. 2007. Bacteria associated with orchid roots and microbial production of auxin. Microbiol. Res. 162: 69-76.   DOI   ScienceOn