Browse > Article

Solubilization of Hardly Soluble Phosphates and Growth Promotion of Maize (Zea mays L.) by Penicillium oxalicum Isolated from Rhizosphere  

SHIN WANSIK (Department of Agricultural Chemistry, Chungbuk National University)
RYU JEOUNGHYUN (Department of Agricultural Chemistry, Chungbuk National University)
CHOI SEUNGJU (Department of Agricultural Chemistry, Chungbuk National University)
KIM CHUNGWOO (Department of Agricultural Chemistry, Chungbuk National University)
GADAGI RAVI (Department of Agricultural Chemistry, Chungbuk National University)
MADHAIYAN MUNUSAMY (Department of Agricultural Chemistry, Chungbuk National University)
SESHADRI SUNDARAM (Department of Agricultural Chemistry, Chungbuk National University)
CHUNG JONGBAE (Division of Life and Environmental Science, Daegu University)
SA TONGMIN (Department of Agricultural Chemistry, Chungbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.6, 2005 , pp. 1273-1279 More about this Journal
Abstract
Penicillium oxalicum strain CBPS-3F-Tsa, an efficient phosphate solubilizing fungus, was evaluated for its production of organic acid in vitro and effect of inoculation on the growth promotion of Maize under greenhouse conditions. The fungus solubilized 129.1, 118.8, and 54.1 mg P/1 of tricalcium phosphate [$Ca_{3}(PO_{4})_{2}$], aluminum phosphate ($A1PO_{4}$),and ferric phosphate ($FePO_{4}$), respectively, after 72 h of incubation. Malic acid, gluconic acid, and oxalic acid were detected in the flasks supplemented with various phosphate sources [240, 146, 145 mM/1 $A1PO_{4},\;FePO_{4},\;and\;Ca_{3}(PO_{4})_{2}$, respectively] together with a large amount of malic acid followed by the other two. The effects of inoculation of P. oxalicum CBPS-3F-Tsa on maize plants were studied under pot culture conditions. P. oxalicum CBPS-3F-Tsa was inoculated to maize plants alone or together with inorganic phosphates in the form of fused phosphates (FP) and rock phosphates (RP). Inoculation of P. oxalicum CBPS-3F-Tsa increased the plant growth and N and P accumulation in plants, compared with control plants, and also had positive effects when applied with RP. The results of this study show that the fungus P. oxalicum strain CBPS-3F-Tsa could solubilize different insoluble phosphates by producing organic acids, particularly malic acid, and also improved the efficiency of RP applied to maize plants.
Keywords
Penicillium oxalicum; phosphate solubilization; organic acids; maize; N and P accumulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Antoun, H. 2002. Field and greenhouse trials performed with phosphate-solubilizing bacteria and fungi. In: First International Meeting on Microbial Phosphate Solubilization. Salamanca, Spain, 16-19 July, pp. 29-31
2 Asea, P. E. A., R. M. N. Kucey, and J. W. B. Stewart. 1988. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol. Biochem. 20: 459-464   DOI   ScienceOn
3 Bojinova, D., R. Velkova, I. Grancharov, and S. Zhelev. 1997. The bioconversion of tunisian phosphorite using Aspergillus niger. Nutr. Cycl. Agroecosyst. 47: 227-232   DOI   ScienceOn
4 Cunningham, J. E. and C. Kuiack. 1992. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilajii. Appl. Environ. Microbiol. 58: 1451- 1458
5 Hocking, A. D., M. Whitelaw, and T. J. Harden. 1998. Penicillium radicum sp. nov. from the rhizosphere of Australian wheat. Mycol. Res. 102: 801-806   DOI   ScienceOn
6 Illmer, P. and F. Schinner. 1995. Solubilization of inorganic calcium phosphates: Solubilization mechanisms. Soil Biol. Biochem. 27: 257-263   DOI   ScienceOn
7 Itoh, S. and S. A. Barber. 1983. A numerical solution of whole plant nutrient uptake for soil-root systems with root hairs. Plant Soil 70: 403-413   DOI
8 Iwase, K. 1992. Gluconic acid synthesis by the ectomycorrhizal fungus Tricholoma robustum. Can. J. Bot. 70: 84-88   DOI
9 Jackson, M. L. 1973. Soil Chemical Analysis. Prentice Hall of India Private Ltd., New Delhi, India
10 Ma, J. F. 2000. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol. 41: 383-390   DOI   ScienceOn
11 McIntyre, M. and B. McNeil. 1997. Dissolved carbon dioxide effects on morphology, growth, and citrate production in Aspergillus niger A60. Enzyme Microb. Technol. 20: 135-142   DOI   ScienceOn
12 Murphy, J. and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31-36   DOI   ScienceOn
13 Nahas, E., J. F. Centurion, and L. C. Assis. 1994. Microrganismos solubilizadores de fosfato e produtores de fosfatases de va rios solos. Rev. Bras. Ci. Solo. 18: 43-48
14 Pacina, R., G. Bonn, and R. H. Burris. 1984. High performance liquid chromatographic elution behavior of alcohols, aldehydes, ketones, organic acids and carbohydrates on a strong cation exchange stationary phase. J. Chromatogr. 278: 245-258
15 Tarafdar, J. C. and A. V. Rao. 1996. Contribution of Aspergillus strains to acquisition of phosphorus by wheat (Triticum aestivum L.) and Chickpea (Cicer arietinum Linn.) grown in a loamy sand soil. Appl. Soil Ecol. 3: 109-114   DOI   ScienceOn
16 Pitt, D., M. J. Mosley, and J. C. Barnes. 1983. Glucose oxidase activity and gluconate production during calcium induced conidiation of Penicillium notatum in submerged culure. Trans. Br. Mycol. Soc. 81: 21-27   DOI
17 Reyes, I., L. Bernier, and H. Antoun. 2002. Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microb. Ecol. 44: 39-48   DOI   ScienceOn
18 Roos, W. and M. Luckner. 1984. Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. J. Gen. Microbiol. 130: 1007-1014
19 Vassileva, M., N. Vassilev, and R. Azcon. 1998. Rock phosphate solubilization by Aspergillus niger on olive cakebased medium and its further application in a soil-plant system. World J. Microbiol. Biotech. 14: 281-284   DOI   ScienceOn
20 Wallrath, J., M. Schmidt, and H. Weiss. 1992. Correlation between manganese-deficiency, loss of respiratory chain complex I activity and citric acid production in Aspergillus niger. Arch. Microbiol. 158: 435-438
21 Garg, K. P. and L. F. Welch. 1967. Growth and phosphorus uptake by corn as influenced by phosphorus placement. Agron. J. 59: 152-154   DOI
22 Anghinioni, I. and S. A. Barber. 1980. Predicting the most efficient P placement for corn. Soil Sci. Soc. Am. J. 44: 1016-1020   DOI
23 Kucey, R. M. N., H. H. Janzen, and M. E. Leggett. 1989. Microbial mediated increases in plant-available phosphorus. Adv. Agron. 42: 199-228   DOI
24 Rhodes, F. M. 1975. Leaf area and plant height as indicators of plant response to fertilization of Corn. In: Soil and Crop Science Society of Florida Proceedings, 85 (18, 19, and 20)
25 Nielson, J., C. L. Johansen, and J. Villadsen. 1994. Culture fluorescence measurements during batch and fed-batch cultivation with Penicillium chrysogenum. J. Bacteriol. 38: 51-62
26 Reyes, I., L. Bernier, R. R. Simard, and H. Antoun. 1999. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol. Ecol. 28: 281-290   DOI   ScienceOn
27 Romer, W. and G. Schilling. 1986. Phosphorus requirement of the wheat plant in various stages of its life cycle. Plant Soil 91: 221-229   DOI
28 Salih, H. M., A. I. Yahya, R. A. Abdul, and B. H. Munam. 1989. Availability of phosphorus in a calcareous soil treated with rock phosphate or fused phosphate as affected by phosphate dissolving fungi. Plant Soil 120: 181-185   DOI
29 Anghinioni, I. and S. A. Barber. 1980. Phosphorus influx and growth characteristics of corn roots as influenced by phosphorus supply. Agron. J. 72: 685-688   DOI
30 Whitelaw, M. A., T. J. Harden, and G. L. Bender. 1997. Plant growth promotion of wheat inoculated with Penicillium radicum sp. nov. Aust. J. Soil Res. 35: 291-300   DOI   ScienceOn
31 Krzystek, L., P. Gluszcz, and S. Ledakowicz. 1996. Determination of yield and maintenance coefficients in citric acid production by Aspergillus niger. Chem. Eng. J. 62: 215-222
32 Gallmetzer, M. and W. Burgstaller. 2002. Efflux of organic acids in Penicillium simplicissimum is an energy-spilling process, adjusting the catabolic carbon flow to the nutrient supply and the activity of catabolic pathways. Microbiology 148: 1143-1149   DOI
33 Kim, E. H., S. Seshadri, M. S. Park, W. S. Shin, and T. M. Sa. 2003. Influence of carbon and nitrogen sources in solubilization of hardly soluble mineral phosphates by Penicillium oxalicum CBPS-3F-Tsa. Korean J. Environ. Agric. 22: 197-202   DOI
34 Reyes, I., L. Bernier, R. R. Simard, P. Tanguay, and H. Antoun. 1998. Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol. Ecol. 28: 291-295
35 Alves, V. M. C., S. N. Parentoni, C. A. Vasconcellos, A. F. C. Bahia Filho, G. V. E. Pitta, and R. E. Schaffert. 2001. Mechanism of phosphorus efficiency in maize, pp. 566-567. In Horst, W. J. et al. (eds.), Plant Nutrition - Food Security and Sustainability of Agro-ecosystems. Kluwer Academic Publishers, The Netherlands
36 Stumm, W. and J. J. Morgan. 1995. Aquatic Chemistry. Chemical Equilibria and Rates in Natural Waters, 3rd Ed.John Wiley, New York
37 Mba, C. C. 1997. Rock phosphate-solubilizing Streptosporangium isolates from casts of tropical earthworms. Soil Biol. Biochem. 29: 381-385   DOI   ScienceOn
38 SundaraRao, W. V. B. and M. K. Sinha. 1963. Phosphate dissolving microorganisms in the soil and rhizosphere. Indian J. Agric. Sci. 33: 272-278
39 Whitelaw, M. A., T. J. Harden, and K. R. Helyar. 1999. Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol. Biochem. 31: 655-665   DOI   ScienceOn
40 Barraso, C. B. and E. Nahas. 2004. The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates. Appl. Soil Ecol. 29: 73-83   DOI   ScienceOn
41 Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265-270   DOI   PUBMED   ScienceOn
42 Barber, S. A. 1977. Application of phosphates fertilizers: Methods, rates and time of application in relation to phosphorus status of soils. Phosphor. Agric. 31: 109-115
43 Tinker, P. B. 1981. Root distribution and nutrient uptake. In: Russsel, R. S., K. Figue and Y. R. Mehta. The Soil/Root System in Relation to Brazilian Agriculture. Instituto Agronomico Do Parana. Proceedings of the Symposium on the Soil
44 Chabot, R., C. J. Beauchamp, J. W. Kloepper, and H. Antoun. 1998. Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate solubilizing Rhizobium leguminosarum biovar Phaseoli. Soil Biol. Biochem. 30: 1615-1618   DOI   ScienceOn
45 Delhaize, E., P. R. Ryan, and P. J. Randall. 1993. Aluminum tolerance in wheat (Triticum aestivum L.). (II. Aluminum stimulated excretion of malic acid from root apices.) Plant Physiol. 103: 695-702   DOI
46 Bar-Yosef, B. 1991. Root excretions and their environmental effects: Influence on availability of phosphorus, pp. 529- 557. In: Waisel, Y., Eshel, A., and Kafkafi, U. (eds.), Plant Roots: The Hidden Half. Marcel Dekker, New York, U.S.A
47 Whitelaw, M. A. 2000. Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv. Agron. 69: 99-151   DOI
48 Goldstein, A. H. 1986. Bacterial solubilization of mineral phosphates. Historical perspective and future prospects. Am. J. Alt. Agric. 1: 51-57   DOI
49 Borkert, C. M. and S. A. Barber. 1985. Predicting the most efficient phosphorus placement for soybeans. Soil Sci. Soc.Am. J. 49: 901-904   DOI   ScienceOn
50 Illmer, P., A. Barbato, and F. Schinner. 1995. Solubilization of hardly soluble $AlPO_4$ with P-solubilizing microorganisms. Soil Biol. Biochem. 27: 265-270   DOI   ScienceOn
51 Banik, S. and B. K. Dey. 1983. Alluvial soil microorganisms capable of utilizing insoluble aluminium phosphate as a source of phosphorus. Zentralblatt fur Mikrobiologie 138: 437-442
52 Vassilev, N., M. Fenice, and F. Fedirici. 1996. Rock phosphate solubilization with gluconic acid produced by immobilized Penicillium variabile P16. Biotechnol. Tech. 10: 585-588   DOI   ScienceOn
53 Alvarez-sanchez, E., J. D. Etchevers, J. Ortiz, R. Nunez, A. Martinez, and J. Z. Castellanos. 2001. Phosphorus nutrition of potato and maize seedlings. Terra 19: 55-65
54 Gallmetzer, M. and W. Burgstaller. 2001. Citrate efflux in glucose-limited and glucose-sufficient chemostat culture of Penicillium simplicissimum. Anton. Leeuw. Int. J. G. 79: 81- 87   DOI   ScienceOn
55 Lu, S. and M. H. Miller. 1994. Prediction of phosphorus uptake by field-grown maize with the Barber-Cushman model. Soil Sci. Soc. Am. J. 58: 852-857   DOI   ScienceOn
56 Sperber, J. I. 1958. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Aust. J. Agric. Res. 9: 778-781
57 Wakelin, S. A. and R. A. Warren. 2004. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol. Fertil. Soils 40: 36-43   DOI   ScienceOn
58 Anonymous, 1999. Fertilizer Application Recommendation for Crops. National Institute of Agricultural Sciences and Technology, Suwon, Korea
59 Burgstaller, W., A. Zanella, and F. Schinner. 1994. Buffer stimulated citrate efflux in Penicillium simplicissimum: An alternative charge balancing ion flow in case of reduced proton backflow? Arch. Microbiol. 161: 75-81   DOI   ScienceOn
60 Jungk, A. and S. A. Barber. 1975. Plant age and the phosphorus uptake characteristics of trimmed and untrimmed corn root systems. Plant Soil 42: 227-23   DOI
61 Lu, S. and M. H. Miller. 1993. Determination of the most efficient phosphorus placement for field grown maize in early growth stages. Can. J. Soil Sci. 73: 349-358   DOI   ScienceOn
62 Stevenson, F. J. 1967. Organic acids in soil, pp. 130-146. In: McLaren, A. D. and Peterson, G. H. (eds.), Soil Biochemistry. Marcel Dekker, New York, U.S.A
63 Basu, U., D. Godbold, and G. J. Tayler. 1994. Aluminum resistance in Triticum aestivum L. associated with enhanced exudation of malate. J. Plant Physiol. 144: 747-753   DOI   ScienceOn