• Title/Summary/Keyword: phased-array receiver

Search Result 31, Processing Time 0.02 seconds

10-GHz band 2 × 2 phased-array radio frequency receiver with 8-bit linear phase control and 15-dB gain control range using 65-nm complementary metal-oxide-semiconductor technology

  • Seon-Ho Han;Bon-Tae Koo
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.708-715
    • /
    • 2024
  • We propose a 10-GHz 2 × 2 phased-array radio frequency (RF) receiver with an 8-bit linear phase and 15-dB gain control range using 65-nm complementary metal-oxide-semiconductor technology. An 8 × 8 phased-array receiver module is implemented using 16 2 × 2 RF phased-array integrated circuits. The receiver chip has four single-to-differential low-noise amplifier and gain-controlled phase-shifter (GCPS) channels, four channel combiners, and a 50-Ω driver. Using a novel complementary bias technique in a phase-shifting core circuit and an equivalent resistance-controlled resistor-inductor-capacitor load, the GCPS based on vector-sum structure increases the phase resolution with weighting-factor controllability, enabling the vector-sum phase-shifting circuit to require a low current and small area due to its small 1.2-V supply. The 2 × 2 phased-array RF receiver chip has a power gain of 21 dB per channel and a 5.7-dB maximum single-channel noise-figure gain. The chip shows 8-bit phase states with a 2.39° root mean-square (RMS) phase error and a 0.4-dB RMS gain error with a 15-dB gain control range for a 2.5° RMS phase error over the 10 to10.5-GHz band.

Improvement of Noise Performance in Phased-Array Receivers

  • Kim, Jung-Hyun;Jeong, Jin-Ho;Jeon, Sang-Geun
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.176-183
    • /
    • 2011
  • This paper presents a new analytical approach and experimental verification for the improvement of noise performance in phased-array receivers. For analysis purposes, a multi-channel array system is converted into an equivalent single-channel system, such that the two presents the identical signal and noise powers at the output, respectively. We define an effective gain, noise figure, and signal-to-noise ratio in the equivalent system. Through the proposed approach, the noise performance of the array receiver is analyzed in a general and straightforward manner and then compared to that of each individual array channel. In addition, the phase noise of the array system is analyzed in a rigorous manner, showing its effective reduction by a factor of the array size. The predicted improvement of the noise performance is experimentally confirmed with a CMOS integrated phased-array receiver.

Study on Front-End Receiver for S-band Active Phased Array Radar (S-대역 능동위상배열레이더용 수신전단기 연구)

  • Kim, Min-Chul;Kim, Wan-Sik;Park, Sang-Hyun;Jeong, Myeong-Deuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.825-832
    • /
    • 2011
  • In this paper, we described the design and measurement results of a Front-End Receiver for S-band active phased array radar. The Front-End Receiver has input P1dB of -4dBm and IIP3 of 7dBm. The measurement results show that gain is $24{\pm}0.7dB$, noise figure are less than 2.3dB over the frequency range of $fc{\pm}0.2GHz$. The Front-End Receiver can protect the receiver path from large input signals with a maximum peak power of multi-kW and recovery time is less than 0.8us. The measurement results satisfy all specifications.

Design and Measurement of Active Phased Array Radar Digital Receiver (능동 위상 배열 레이더의 디지털 수신기 제작 및 측정)

  • Kim, Tae-Hwan;Lee, Sung-Ju;Lee, Dong-Hwi;Hong, Yun-Seok;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.371-379
    • /
    • 2011
  • Active phased array antenna structure is used for modern multi-function radars. To search targets in high clutter environment, the radar receiver needs high dynamic range performance. Though active phased array antenna structure lead to increase of SNR, the SFDR is not increased. In this paper, high SFDR receiver of X-band active phased array radar was designed and manufactured. One channel digital receiver is connected to 32 T/R modules and one PCB assembly is composed to 2 channel digital receivers with RF part, ADC part, LO distribution part and digital down conversion part. A commercial FIFO board was used for digital receiver measurement about major performance in digital output signal condition. The measured digital receiver gain and SFDR is 33 dB and more than 81 dBc each.

A Transmission Technique of Multichannel Receiver Data for the Phased-Array Radar (위상 배열레이더의 다채널 수신 데이터 전송 기법)

  • Jeong, Myung-Deuk;Kim, Han-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1188-1195
    • /
    • 2012
  • The trend for the development of radar is the active phased-array radar system. The trade-off between the processing speed and the number of the signal process board for the real time signal processing has to be optimized particularly in multichannel radar system. This paper introduces a transmission technique in order to transmit a large amount of received data from an Antenna Part to Signal Process Part. As a result, the number of the S/L board(COTS board) is reduced to one half, and the margin of the data transmission rate is about 2 times higher than the original method.

8.2-GHz band radar RFICs for an 8 × 8 phased-array FMCW receiver developed with 65-nm CMOS technology

  • Han, Seon-Ho;Koo, Bon-Tae
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.943-950
    • /
    • 2020
  • We propose 8.2-GHz band radar RFICs for an 8 × 8 phased-array frequency-modulated continuous-wave receiver developed using 65-nm CMOS technology. This receiver panel is constructed using a multichip solution comprising fabricated 2 × 2 low-noise amplifier phase-shifter (LNA-PS) chips and a 4ch RX front-end chip. The LNA-PS chip has a novel phase-shifter circuit for low-voltage operation, novel active single-to-differential/differential-to-single circuits, and a current-mode combiner to utilize a small area. The LNA-PS chip shows a power gain range of 5 dB to 20 dB per channel with gain control and a single-channel NF of 6.4 dB at maximum gain. The measured result of the chip shows 6-bit phase states with a 0.35° RMS phase error. The input P1 dB of the chip is approximately -27.5 dBm at high gain and is enough to cover the highest input power from the TX-to-RX leakage in the radar system. The gain range of the 4ch RX front-end chip is 9 dB to 30 dB per channel. The LNA-PS chip consumes 82 mA, and the 4ch RX front-end chip consumes 97 mA from a 1.2 V supply voltage. The chip sizes of the 2 × 2 LNA-PS and the 4ch RX front end are 2.39 mm × 1.3 mm and 2.42 mm × 1.62 mm, respectively.

Development of Four-Way Analog Beamforming Front-End Module for Hybrid Beamforming System

  • Cho, Young Seek
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.4
    • /
    • pp.254-259
    • /
    • 2020
  • Phased-array antennas comprise a demanding antenna design methodology for commercial wireless communication systems or military radar systems. In addition to these two important applications, the phased-array antennas can be used in beamforming for wireless charging. In this study, a four-way analog beamforming front-end module (FEM) for a hybrid beamforming system is developed for 2.4 GHz operation. In a hybrid beamforming scheme, an analog beamforming FEM in which the phase and amplitude of RF signal can be adjusted between the RF chain and phased-array antenna is required. With the beamforming and beam steering capability of the phased-array antennas, wireless RF power can be transmitted with high directivity to a designated receiver for wireless charging. The four-way analog beamforming FEM has a 32 dB gain dynamic range and a phase shifting range greater than 360°. The maximum output RF power of the four-way analog beamforming FEM is 40 dBm (=10 W) when combined the four individual RF paths are combined.

Receiver Gain of Active Phased Array Radar-Dependence on ADC Characteristic (ADC 특성에 따른 능동 위상 배열 레이더 수신기의 이득 설정 방법)

  • Kim, Tae-Hwan;Choi, Beyung-Gwan;Lee, Hee-Young;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.52-59
    • /
    • 2009
  • In modern radars, dynamic range requirements far severed due to high CNR(Clutter-to-Noise Ratio) environment operation scenario. ADC spurious signal restricted the required dynamic range. In this paper, receiver gain of active phased array radar dependent on ADC nonlinear characteristic was analyzed. Within limited scope of ADC SFDR which blocks required system dynamic range, ADC dynamic range reaches trade-off with ADC SNR loss. Comparing antenna stage output noise voltage to that of ADC input, receiver gain was mathematically analyzed. Finally the whole contents were explained from the application example.

Additional degree of freedom in phased-MIMO radar signal design using space-time codes

  • Vahdani, Roholah;Bizaki, Hossein Khaleghi;Joshaghani, Mohsen Fallah
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.640-649
    • /
    • 2021
  • In this paper, an additional degree of freedom in phased multi-input multi-output (phased-MIMO) radar with any arbitrary desired covariance matrix is proposed using space-time codes. By using the proposed method, any desired transmit covariance matrix in MIMO radar (phased-MIMO radars) can be realized by employing fully correlated base waveforms such as phased-array radars and simply extending them to different time slots with predesigned phases and amplitudes. In the proposed method, the transmit covariance matrix depends on the base waveform and space-time codes. For simplicity, a base waveform can be selected arbitrarily (ie, all base waveforms can be fully correlated, similar to phased-array radars). Therefore, any desired covariance matrix can be achieved by using a very simple phased-array structure and space-time code in the transmitter. The main advantage of the proposed scheme is that it does not require diverse uncorrelated waveforms. This considerably reduces transmitter hardware and software complexity and cost. One the receiver side, multiple signals can be analyzed jointly in the time and space domains to improve the signal-to-interference-plus-noise ratio.

Performance Evaluation of Cascade AOA Estimation Algorithm Based on Square Array Antenna (정방배열 안테나 기반 캐스케이드 도래각 추정 알고리즘 성능평가)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1053-1060
    • /
    • 2019
  • The satellite antenna for collecting information is mainly classified into reflector antenna, lens antenna, and phased array antenna. Among them, the phased array antenna with the excellent antenna pattern control performance for a multi-beam system is frequently used. Although the terrestrial signal information collection based on the satellite is not much effected geographically, it requires the accurate angle-of-arrival (AOA) information of the interesting signal. In this paper, we discuss the characteristics and the advantages/disadvantages of the antenna array shape employed in the phased array antenna. In addition, we present the Cascade AOA estimation algorithm based on a square array antenna mounted on the satellite receiver, and show the performance evaluation results through the computer simulation.