
1  |   INTRODUCTION

Over the past decade, multi-input multi-output (MIMO) an-
tenna systems have attracted significant attention from re-
searchers in the communication systems field, particularly 
for radar systems [1–4]. Deploying multiple antennas for both 
transmitters and receivers can improve diversity, which en-
hances channel capacity and reduces bit error rates and signal 
fading. This method has been considered in many advanced 
radar applications in recent years [5–10]. MIMO radar sys-
tems can be divided into two main types. The first type is 
widely separated MIMO radar, where transmit and receive 
antennas are located far from each other (relative to the wave-
length). This type of system enhances spatial diversity [11]. 

The second type is co-located MIMO radar, where trans-
mit and receive antennas are close together [5]. This type 
of system has advantages in terms of interference rejection, 
improvement of parameter identifiability, and enhanced flex-
ibility in beam pattern design. Our focus in this paper is co-
located MIMO radar. Phased-MIMO radar, which was first 
proposed in [12], divides an antenna array into various sub-
arrays. The waveforms in each sub-array are fully correlated, 
similar to phased radar arrays [1,13], and different sub-arrays 
have different stochastic properties [12,14]. The high process-
ing load of multi-antenna radar systems has motivated the 
development of different transmit signal designs and receiver 
structures to reduce complexity and enhance processing ef-
ficiency. One such design is space-time coding (STC). The 
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concept of STC was introduced by Foschini et al. [15]. 
In radar applications, STC was deployed by De Maio et al.
[16] to improve the detection probability of MIMO radar. 
They demonstrated that a set of orthogonal space-time codes 
can improve the detection probability of multi-antenna radar 
systems. The waveform design problem has been discussed 
in several studies [17–21]. In [17–19], MIMO radar wave-
forms with constant moduli and similarity constraints were 
designed. A constant modulus reduces the cost of employing 
multiple radio amplifiers in a transmitter. Additionally, sim-
ilarity constraints can be used to make a transmitted signal 
similar to a reference signal to realize the desired shape of a 
beam pattern. In [18], a robust waveform design for MIMO 
radar was proposed to improve target detectability and the 
worst-case signal-to-interference-plus-noise ratio (SINR) in 
signal-dependent interference. The authors proposed algo-
rithms to optimize the SINR for unknown target locations 
and interferences by defining an uncertain region for steering 
matrices. They divided high-dimensional problems into mul-
tiple one-dimensional problems for which optimal solutions 
could be found in polynomial time. Additionally, space-time 
transmit codes and space-time receive filter designs were dis-
cussed in [22] and [23]. In [22], transmit and receive filters 
were jointly designed to maximize SINRs. In [23], an itera-
tive method was designed to improve the worst-case SINR.

One of the major concerns in traditional phased-MIMO 
radar is realizing predetermined beam patterns and transmit 
covariance matrices (the transmit beam pattern trend depends 
on the transmit covariance matrix, which will be discussed in 
the following sections). Realizing any desired transmit co-
variance matrix requires generating uncorrelated waveforms, 
which inevitably require different types of signal generators 
with high costs. The STC signal design proposed in this paper 
resolves this issue.

MIMO radars transmit beams in space uniformly and 
can be used in multi-target scenarios at the cost of reduced 
SINRs. Phased-array radars can focus transmit beams to the 
angle of a single target, resulting in the best SINRs among 
multi-antenna radar systems. The problem of waveform de-
sign for co-located MIMO radars for multi-target scenarios 
in the presence of interference was studied in [20]. The au-
thors proposed a sequential quasi-convex algorithm to opti-
mize the minimum SINR at the receiver. Additionally, the 
authors of [21] proposed a waveform optimization method to 
design transmit and receive filters jointly to improve worst-
case SINRs.

To achieve focused beams at several azimuth angles 
in multi-target scenarios, we must use correlated MIMO 
radar in which the waveforms of different transmit an-
tennas are partially correlated. The problem of finding a 
proper transmit covariance matrix to match the desired 
beam pattern (beam pattern matching design) is discussed 
in detail in [24]. To realize any desired partially correlated 

covariance matrix, we must use different types of signal 
generators or phased-MIMO radars, which increases cost. 
Additionally, phased-MIMO radar requires uneven trans-
mit power, which requires different types of radio amplifi-
ers in transmitters. To overcome these issues, we propose a 
novel scheme that uses STC and simple phased-array radar 
simultaneously to realize partially correlated waveforms. 
STC content can be selected to achieve equal transmit 
power for each antenna.

We propose using STC as an additional degree of freedom 
in MIMO radar waveform signal design. Increasing diversity 
makes propagation paths more reliable under undesirable 
fading channel conditions because there are several ways for 
a signal to be transmitted and received. When STC is used, 
diversity can be achieved by adopting predesigned transmit-
ted weighting factors in different space/time slots, rather than 
sending diverse base waveforms. Our main contribution is 
that STC is used in a transmitter with fully correlated base 
waveforms to realize predetermined desired transmit cova-
riance matrices. In other words, phased-MIMO radar with 
any arbitrary transmit covariance matrix can be realized by 
combining phased-array fully correlated base waveforms 
with STC. At a receiver, several data strings are received in 
the space and time domains. We propose a joint space-time 
method to analyze received data matrices in a manner that 
improves SINR performance, whereas traditional methods 
only work on received vectors in one dimension. We attempt 
to use the maximum degrees of freedom to design wave-
forms in transmitters to achieve desired beam patterns and 
maximize the SINR to distinguish targets from interference 
at receivers.

Our study on MIMO radar systems yielded two main con-
tributions, which can be summarized as follows.

•	 Any desired beam pattern and corresponding covariance 
matrix in a multi-target scenario can be realized by design-
ing a proper STC matrix and deploying fully correlated 
base waveforms in transmitter-like phased-array radars. 
Unlike traditional correlated MIMO radar, this method 
does not require different types of signal generators in the 
transmitter, which reduces cost considerably. Additionally, 
the complexity of transmitters can be reduced. To achieve 
maximum power efficiency, the constant-envelope (CE) 
method can be used to deploy only a single type of power 
amplifier in all transmit nodes.

•	 On the receiver side, we receive two-dimensional data 
in both the space and time domains. Therefore, we must 
perform matrix analysis instead of vector analysis. Unlike 
traditional processing methods in which processing is per-
formed only in the space domain, we propose a linear joint 
processing method in the space and time domains simul-
taneously to achieve the maximum possible SINR perfor-
mance. SINR maximization is modeled as a semi-definite 
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programming problem. The proposed processing method 
and related optimization problem represent a general case 
of the minimum-variance distortionless response (MVDR) 
problem. Based on the fractional form in the proposed 
cost function, the Dinkelbach method is used to solve this 
problem.

The remainder of this paper is organized as follows. In 
Section 2, a model for co-located MIMO radar with multi-
ple transmitter and receiver antenna elements with STC is 
described. Additionally, a covariance matrix with STC for 
MIMO radar and the related performance criteria are pre-
sented. Section 3 discusses how deploying STC results in 
extra degrees of freedom for MIMO radar signal design. In 
Section 4, the proposed method with CE conditions is dis-
cussed and the required conditions are satisfied. The receive 
filter design is discussed in Section 5. A multi-target scenario 
for the proposed design is discussed in Section 6. Finally, 
simulation results and concluding remarks are presented in 
Sections 7 and 8, respectively.

2  |   System model

Consider a MIMO radar with Mt and Mr for transmit and 
receive antennas, respectively. The antennas are co-located 
with half-wavelength spacing on both the transmitter and 
receiver sides. Additionally, suppose that in addition to the 
target of interest, there are L interferers affecting the received 
signal.

As shown in Figure 1, A is an Mt × N STC matrix con-
taining predesigned amplitudes and phases in different space-
time slots and N is the extension in time (ie, number of pulses 
transmitted by an antenna). Therefore, the (i, j)-th element 
in the code matrix represents the amplitude and phase of the 
pulse transmitted by the i-th antenna (i = 1, 2, …, Mt) in the 

j-th (j = 1, 2, …, N) time extension. Suppose that the width 
of a single pulse in each duration is constant and equal to τp, 
and that the period between two consecutive pulses is Tp (ie, 
the pulse repetition). Therefore, the duration of the waveform 
emitted by each transmitter is (N – 1)Tp + τp. Suppose that 
there is point clutter in the form of L discrete interference ob-
jects. All equations presented below are baseband equations. 
Additionally, we consider that all targets and interfering ob-
jects are within the unambiguous range of the radar, meaning 
the waveform has a low pulse repetition frequency to avoid 
any range ambiguity. In the discrete-time signal model, the 
transmitted pulse in each period is modeled by Ks samples. In 
particular, by using STC, the discrete-time baseband signal 
corresponding to the n-th pulse train (n = 1, 2, …, N) and 
k-th sample (k = 1, 2, …, Ks) is an Mt × 1 vector defined as

where Sk has a size of Mt × 1 and is the k-th sample vector of the 
transmitted base waveform (k = 1, 2, …, Ks). Additionally, an 
is an Mt × 1 column vector representing the n-th column of the 
space-time code matrix and ⊙ is the Hadamard (element-wise) 
product operator. S = [S1, S2, …, SK] is the transmit discrete-
time base waveform and A = [a1, a2, . . . , aN]Mt×N represents 
an Mt × N STC matrix.

As shown in Figure 1, a discrete-time baseband transmit-
ted signal with a size of Mt × KsN can be expressed as

The transmitted signal matrix X represented in (2) can be 
interpreted as N pulse trains each of which contains Ks samples. 
For the sake of simplicity and without loss of generality, we as-
sume that each pulse is represented by a single sample(Ks = 1).

On the receiver side, a received waveform is passed 
through a down-converter and matched filter. Therefore, the 
observed baseband signal at the receiver with a size of Mt × N 
can be expressed as [19]

where θ0 is the azimuth angle of the target of interest, θi is the 
angle of the i-th interference, and β0 is the channel coefficient 
between the transmitter, target, and receiver (considering the ef-
fect of the radar cross-section (RCS) of the target). Additionally, 
βi represents the channel and RCS effect related to the i-th 
interference. Suppose that a uniform linear array with half-
wavelength spacing is used. Then, aT(θ) and aR(θ) are transmit 
and receive steering vectors that can be expressed as [1]

(1)Snk = Sk ⊙ an,

(2)
X = [

Ks times

���������
a1, . . . , a1, . . . ,

Ks times

�����������
aN, . . . , aN ] ⊙ [

N times

�������������

S, S, . . . , S ].

(3)Y=�0aR(�0)aT
T
(�0)X+

L
∑

i= 1

�
i
aR(�

i
)aT

T
(�

i
)X+v

=Y0+Yint+v,

F I G U R E  1   STC design for phased-MIMO radar
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Additionally, Y0 and Yint are the received signals cor-
responding to the target of interest and interference term, 
respectively. v is a matrix of white Gaussian noise with 
zero mean and a covariance matrix �2

v
I. According to (3), 

we have N separate columns of received vectors that can 
be analyzed to improve the performance of MIMO radar. 
Joint processing in the space and time domains at the re-
ceiver will be detailed in the following sections. For each 
transmit/receive sensor pair, there is a forward transmit 
channel to the target and reverse receive channel from 
the target. These channels are modeled as lossless time 
delay and phase shift channels. According to (3), the chan-
nel between a transmitter and target is modeled as aT(θ), 
which has different phase shifts for each antenna element. 
Furthermore, the channel between a target and receiver 
is modeled as aR(θ). In this model, the phase shifts of 
different sub-channels are reflected by steering vectors. 
Therefore, channel state information is known for both 
transmitters and receivers.

Suppose that the desired transmit beam pattern is given. 
The corresponding covariance matrix can be achieved using 
the algorithms proposed in [24]. In next section, the transmit 
covariance matrix and its relationship with the STC matrix 
will be described.

3  |   Proposed STC matrix design

Suppose that the covariance matrix of the transmit discrete-
time base waveform is denoted as R (ie, R = E[SSH]). Then, 
the transmit signal covariance matrix is denoted as Rnew and 
can be expressed as

Therefore, the transmit covariance matrix depends on two 
parameters. The first parameter is the base waveform cova-
riance matrix (R), and the second parameter is the STC ma-
trix (A). In the proposed method, the STC matrix is designed 
achieve the desired covariance matrix and corresponding 
performance.

For any desired beam pattern or key performance in-
dicator for MIMO radar, a covariance matrix can be de-
signed using the beam pattern matching design presented 
in [24] or the references therein. One of the main contri-
butions of this paper is that we can design any desired 
covariance matrix by using fully correlated waveforms 

and simply adjusting the STC elements. This means that 
phased-MIMO radar with any arbitrary covariance ma-
trix can be realized by deploying a phased array and STC 
simultaneously. In other words, R can be set to all ones 
(R = [1]Mt×Mt

), meaning the transmit covariance matrix 
depends solely on the transmit STC matrix. Therefore, (5) 
can be simplified as follows:

As indicated by (6), the transmit covariance matrix de-
pends on two parameters. The first is the covariance matrix 
(R) of the base signal and the second is the space-time code 
(A). It should be noted that without STC (traditional MIMO 
radar signal design), the transmit covariance matrix only 
depends on the covariance of the base waveform. By using 
STC, we can use the same base signals (fully correlated) in all 
transmitters, similar to phased-array radar, and simply adjust 
the space-time codes. Therefore, it is not necessary to deploy 
different signal generators in each antenna, which reduces cost 
significantly. Additionally, hardware complexity in the trans-
mitter will be reduced and any desired covariance matrix can 
be achieved.

In the next section, the relationship between the STC ma-
trix and a given specific transmit covariance matrix will be 
discussed.

3.1  |  STC and transmit covariance matrix 
relationship

Consider a transmit covariance matrix derived according to 
(6). In this section, we find the set of STCs that can yields a 
specific transmit covariance matrix. Singular value decom-
position (SVD) of the target transmit covariance matrix Rnew 
is as performed follows:

where U is the unitary matrix, U = V based on the symmetric 
property of all covariance matrices, and � is a diagonal matrix 
containing the singular values of Rnew defined as

where σi represents the singular values of Rnew in descend-
ing order and r is the rank of Rnew. Then, A in (6) can be de-
rived by calculating the square root of Rnew as follows [24]:

(4)aT(�)= [1, ej�sin(�), ej2�sin(�), . . . , ej(Mt−1)�sin(�)]T,

aR(�)= [1, ej�sin(�), ej2�sin(�), . . . , ej(Mr−1)�sin(�)]T.

(5)Rnew =E[XX
H]=E[SS

H]⊙ (AA
H)

=R⊙ (AA
H).

(6)Rnew = R ⊙ (AA
H) = AA

H.

(7)Rnew = UΣV
H = UΣU

H,

(8)� = diag(�1, �2, . . . , �r, 0, 0, . . . , 0),

(9)A = U�1∕2� = U

[

Pr × r 0r × (N − r)

0(Mt − r) × r 0r × (N − r)

]

�,
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where 0 is a zero matrix and � is an Mt × N Gaussian matrix with 
zero mean and unit variance (ie, E[��H] = I) [24]. Additionally 
P is an r × r diagonal matrix defined as.

The STC matrix A derived in (9) yields the target

Algorithm 1  Proposed STC design for realizing any de-
sired covariance matrix

1.	 Procedure Find the proper STC matrix (A).
2.	 Desired transmit beam pattern is given as Pt(θ).
3.	 Find the corresponding covariance matrix Rnew based on 

the algorithm proposed in [20].
4.	 Set the covariance matrix of the base signal to all ones, 

R = [1]Mt × Mt
.

5.	 Generate a Gaussian Mt × N matrix � ∼ N (0, I).
6.	 U and � are derived through the SVD of Rnew as shown in 

(7).
7.	 A = U�1∕2� is achieved using (9).

covariance matrix Rnew as

where the expectation is given with respect to the transmit ma-
trix A. These procedures are summarized in Algorithm 1. The 
STC matrix derived in (9) has a non-CE based on Gaussian 
distribution of �, which is an important issue in practice. To 
resolve this issue, CE methods for implementing the STC ma-
trix and realizing any desired covariance matrix can be used as 
described in [24]. This topic will be reviewed later.

3.2  |  Feasibility condition

In this section, the feasibility conditions for the proposed 
design will be discussed. In other words, the necessary con-
ditions for the STC for implementing MIMO radar using a 
phased-array structure will be discussed. According to (9), 
the ranks of the STC matrix and covariance matrix should be 
equal. However, the rank of any matrix is always less than 
or equal to the minimum number of its rows and its columns. 
Therefore, we have

Then, the feasibility condition can be summarized as 
follows:

This means that the number of time extensions in STC 
should be greater than or equal to rank(Rnew). The condition in 
(12) supports this conclusion. Based on the conditions in (9), 
(12), and (13), any desired covariance matrix (corresponding 
to the desired beam pattern or any other performance criteria) 
can be achieved by sending the same waveforms for all trans-
mitters and simply adjusting the STC amplitude and phase 
values according to the given conditions.

4  |   CE STC design

CE waveform design is an important practical constraint in 
signal design [17] because radio-frequency amplifiers oper-
ate at maximum efficiency when the CE property is main-
tained in all transmit antennas. To realize any desired beam 
pattern and the corresponding covariance matrix, the CE 
waveform design method can be adopted [17]. This method 
maps Gaussian random variables with varying envelopes 
onto binary symbols (called BPSK symbols) with a CE. 
These signals will yield to the desired covariance matrix [17]. 
The transmit beam pattern of a MIMO radar is given by [1]

where Rnew is the corresponding transmit covariance matrix 
related to the CE STC matrix. In other words, Rnew = E[AA

H]. 
It should be noted that for any covariance matrix, the corre-
sponding Gaussian signal can be found easily according to (9). 
Suppose that the transmit non-constant Gaussian waveform and 
its covariance matrix are expressed as Xg and Rg respectively. 
Then, we have,

where the last equality is the eigenvalue decomposition of the 
corresponding Gaussian covariance matrix, Λ is the Mt × Mt 
diagonal matrix of eigenvalues of Rg, and W is the Mt × Mt 
matrix of Eigenvectors of Rg [17]. Under these conditions, the 
related Gaussian matrix is given by [17]

where �g is an Mt × N Gaussian matrix with zero mean and a 
unit covariance matrix, and Rg = E[XgX

H
g

]. According to [17], 

we can use the sign function to map a Gaussian signal onto a 
CE BPSK waveform as follows [17]:

Furthermore, the covariance matrices of A and χg are Rnew 
and Rg, respectively. As demonstrated in [17], after mapping 

(10)P=diag (�1, �2, . . . , �
r
).

(11)E[AA
H] =E[U�1∕2��H�1∕2

U
H]

=E[U�U
H]=Rnew,

(12)rank (Rnew) = rank (A) ≤ min (Mt, N) ≤ N.

(13)N≥ rank (Rnew).

(14)Pt(�) = a
H
T

(�)RnewaT(�),

(15)Rg = E[XgX
H
g

] = WΛW
H,

(16)Xg = WΛ1∕2�g,

(17)A= sign (Xg).
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the Gaussian matrix onto a CE BPSK signal, the correspond-
ing covariance matrices can be derived as follows [17]:

A proof of this procedure is presented in [17]. According 
to (18), the CE condition holds if and only if sin((�∕2)Rnew) 
is positive semi-definite. Therefore, we have

In other words, the CE condition can hold with STC 
if and only if sin((�∕2)(AA

H)) is positive semi-definite. 
Figure 2 presents a block diagram of the CE conditions and 
mapping process. This block diagram indicates that (17) 
will yield Rnew, which is our target. In a realistic scenario, 
there is an inter-processing operation on the transmitter 
side before predesigned symbols are sent, and A and Rnew 
do not have an injective relationship (ie, for a distinct Rnew,  
there is an unlimited number of solutions for A as a CE 
STC matrix), meaning the acceptable solutions are STC 
matrices that satisfy (13) and (19) simultaneously.

5  |   Proposed receive f i l ter  design

Consider the system model and observation matrix in the 
space and time domains defined in (3). The observation 
data should be analyzed in both the space and time dimen-
sions to improve the performance of MIMO radar. Here, we 
focus on the receiver to maximize the SINR. Because an 
observation is a matrix of size Mr × N, it is passed through 
two finite-impulse response (FIR) filters D and W of sizes 
N × 1 and Mr × 1, respectively. The FIR filter D is related 
to the time domain and W corresponds to the space do-
main. The processing blocks in the receiver are presented in 
Figure 3. The scalar output of the bilinear filter is derived as

The roles of the filters D and W are to weight the observa-
tion matrix in the time and space domains, respectively. The 
block after the observation matrix is called a bilinear filter be-
cause it is linear with respect to D when W is constant and vice 
versa. The observation matrix in (3) consists of three terms. 
The first term is the signal reflected from the target of interest, 
which is called the desired signal. The second term is the sum 
of all reflections from interferences and the third term is white 
Gaussian noise. According to (20), D and W affect the output 

SINR. Therefore, the main problem is to find the optimal bilin-
ear filters to maximize the SINR. According to (20), the output 
SINR is derived as

where E[(. )] is the mathematical expectation operator and 
B(�) = aR(�)aT

T
(�). P0, Pint, and Pn are the powers of the de-

sired signal, interference, and noise, respectively, which can 
be derived as

According to (21) and (22), the output SINR depends 
on the transmit STC and receive bilinear filters D and W. 
Therefore, (21) can be simplified as

where SNR = E[ |
|

�0
|

|

2
]∕�2

v
 is the signal-to-noise ratio (SNR) 

and INRi = E[ |
|

� i
|

|

2
]∕�2

v
 is the interference-to-noise ratio 

(INR) corresponding to the i-th interference. Additionally, v is 

(18)Rg = sin
(

�

2
Rnew

)

.

(19)sin
(

�

2
Rnew

)

= sin
(

�

2
(AA

H)
)

≥ 0.

(20)
r=W

H
YD=W

H(Y0+Yint+v)D

=W
H

Y0D+W
H

YintD+W
H

vD

= r0+rint+r
n
.

(21)

SINR=

E

�

�

�

r0
�

�

2
�

E

�

�

�

rint
�

�

2
�

+E

�

�

�

r
n
�

�

2
� =

P0

Pint+P
n

=

E

�

�

�

�

�0W
H

B(�0)XD
�

�

�

2
�

E

�

�

�

�

�

W
H
�

∑L

i=1
�

i
B(�

i
)X

�

D
�

�

�

�

2
�

+E

�

�

�

�

W
H

vD
�

�

�

2
�

,

(22)

P0 =E

�

�

�

�

�0W
H

B(�0)XD
�

�

�

2
�

,

Pint =E

⎡

⎢

⎢

⎣

�

�

�

�

�

�

W
H

�

L
�

i= 1

�
i
B(�

i
)X

�

D

�

�

�

�

�

�

2
⎤

⎥

⎥

⎦

,

P
n
=E

�

�

�

�

W
H

vD
�

�

�

2
�

.

(23)SINR =
SNR

�

�

�

W
H

Y0D
�

�

�

2

∑

L
i=1

INRi
�

�

�

W
H

Yint, iD
�

�

�

2

+
�

�

�

W
H

vD
�

�

�

2
,

F I G U R E  2   CE STC design block diagram

Inter-processing in transmitter

Rnew 

designed
t( ) 

designed

Rg = sin
π
2
Rnew

= WΛWH

Gaussian 
covariance matrix

Xg = WΛ
1
Χ

Gaussian 
transmit signal

A = sign(Xg)

CE STC

F I G U R E  3   Bilinear receive filter design (D,W) corresponding 
to the space and time domains. The two blocks are equivalent

(. )H D (. )H WY YH DHYH YD

D, W

WHYD

Y WHYD
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a white Gaussian noise matrix with zero mean and a unit covari-
ance matrix. The maximization problem for finding the optimal 
bilinear filters D and W can be written as

This problem is called bilinear semi-definite programming. 
When N = 1, the problem in (24) can be reduced to the well-
known MVDR problem. Therefore, this optimization problem is 
a general case of the MVDR problem with a closed-form solution 
[1]. Based on the fractional form in the cost function of (24), its 
Dinkelbach form can be optimized instead [25]. The Dinkelbach 
form of (25) is derived as the numerator minus a positive factor 
of the denominator [25]. Therefore, (24) can be simplified as

Proposition 1  The cost function in (25) has the same form 
as ∑ Mr

p=1

∑

N
j=1

∑ Mr

k=1

∑

N
i=1

aijklxiykyjyp, which has been 
discussed in [26] and [27]. Therefore, (24) and (25) are 
NP-hard problems. This finding was also proved in 
[18,26–29].

Proof. �The general form of the cost function in (25) is 
|

|

|

W
H

YD
|

|

|

2, which can be simplified as

Because (26) has the same form as the cost function in [26] 
and [27], (25) is an NP-hard problem with no closed-form general 
solution. To solve this problem, we can use iterative algorithms 
such as particle swarm optimization. In the next section, the sim-
ulation results for the proposed method will be discussed in detail.

6  |   Mult i - target  scenario

One of the most important issues in radar is parameter iden-
tifiability, which is the maximum number of targets that can 
be uniquely identified [30]. In a multi-target scenario, the 
received baseband signal at the receiver can be expressed as1

where K is the total number of targets and the k-th target 
is located at �k0. Additionally, �k0 is the RCS related to the 
k-th target. The identifiability equation can be written as 
follows [30]:

where 
⌢

𝛽
k0

 and 
⌢

𝜃
k0 are the estimates of the RCS and the azimuth 

angle of the k-th target, respectively. Parameter identifiability is a 
consistency concept that is used to establish the uniqueness of the 
parameter estimation problem as the SNIR or the number of snap-
shots N goes to infinity [30]. In the proposed design, the transmit 
covariance matrix is partially correlated and the rank of the trans-
mit signal matrix is represented by r, where 1 ≤ r ≤ Mt. In the 
MIMO radar case, all transmit waveforms are completely uncor-
related, meaning rMIMO = rank(A) = Mt. Additionally, in phased-
array radar, all transmit waveforms are fully correlated, meaning 
rPh = rank(A) = 1. To discuss the uniqueness of the solutions 
to (28), it can be expressed as 

⌢

B

⌢

�= B�, where 
⌢

B is the estima-
tion of B and the k-th column of B is equal to aR(𝜃k0) ⊗ aT(𝜃k0) 
and � =

[

�10, �20, . . . , �K0

]T. Some of the equations in 
⌢

B

⌢

�= B� 
may be identical. Therefore, we let 

⌢

C

⌢

�= C� denote the system 
of equations in which identical equations are eliminated. C is an 
Lc × K matrix (K is the number of targets), and � is a K × 1 vector 
containing the RCSs of the targets.

Depending on the geometry of the transmit and receive 
arrays, and how many antennas they share, some equa-
tions in 

⌢

B

⌢

�= B� may be identical [31]. In other words, 
it is important to determine how many distinct elements 
aR

(

𝜃
k0

)

⊗aT

(

𝜃
k0

)

 exist. For example, when the trans-
mit and receive arrays share no antennas in MIMO radar, 
aR

(

𝜃
k0

)

⊗aT

(

𝜃
k0

)

 will have MtMr possible distinct values. 
This is the case in which the most distinct targets can be dis-
tinguished. Additionally, suppose that the transmit antennas 
form a uniform linear array (ULA) that is a subset of the 
receive antenna ULA. In this case, the transmit and receive 
arrays share the maximum number of antennas, meaning 
aR

(

𝜃
k0

)

⊗aT

(

𝜃
k0

)

 may only contain Mt + Mr − 1 distinct el-
ements. This is the worst scenario for the identification of 
distinct targets. Therefore, in MIMO radar, we have

Based on the results presented in [30] and [31], a suffi-
cient and necessary condition for parameter identifiability is

(24)max
D,W

SNR
�

�

�

W
H

Y0D
�

�

�

2

∑

L
i=1

INRi
�

�

�

W
H

Yint,iD
�

�

�

2

+
�

�

�

W
H

vD
�

�

�

2
.

(25)min
D,W

(

∑

L
i=1

INRi
|

|

|

W
H

Yint,iD
|

|

|

2

+
|

|

|

W
H

vD
|

|

|

2

− SNR
|

|

|

W
H

Y0D
|

|

|

2
)

.

(26)

�

�

�

W
H

YD
�

�

�

2

=

�

�

�

�

�

�

�

�

�

�

�

w∗
1
, w∗

2
, . . . , w∗

Mr

�

. Y.

⎡

⎢

⎢

⎢

⎢

⎣

d1

d2

⋮

dN

⎤

⎥

⎥

⎥

⎥

⎦

�

�

�

�

�

�

�

�

�

�

2

=

Mr
�

p= 1

N
�

j= 1

Mr
�

k= 1

N
�

i= 1

diw
∗
k
d∗

j
wpykykiy

∗
pj

.

 1Here, another target located in the same range bin is considered as 
interference.

(27)
Y=

K
∑

k= 1

�
k0aR(�

k0)aT

T
(�

k0)X

+

L
∑

i= 1

�
i
aR(�

i
)aT

T
(�

i
)X+v,

(28)
K
∑

k= 1

⌢

𝛽
k0aR(

⌢

𝜃
k0)aT

T
(
⌢

𝜃
k0)X =

K
∑

k= 1

𝛽
k
aR(𝜃

k
)aT

T
(𝜃

k
)X,

(29)Lc ∈
[

Mt + Mr − 1, MtMr

]

.
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where ⌈. ⌉ denotes the smallest integer greater than or equal to a 
given number. Substituting (29) into (30) yields

(31) indicates that the maximum number of targets that 
a MIMO radar can identify depends on the geometry of the 
transmit/receive arrays.

In phased-array radar, this number is reduced because 
there is only one type of signal to be transmitted, meaning Mt 
should be replaced with one, which yields

In our proposed design, the number of independent trans-
mit waveforms is equal to the rank of the STC matrix (ie, 
rPh-MIMO = rank(A)). Therefore, the maximum number of tar-
gets that can be uniquely identified can be calculated as follows:

7  |   Simulation results

In this section, simulation results are presented in two 
parts. The first part focuses on realizing the desired co-
variance matrix by using the appropriate STC in the trans-
mitter. The second part focuses on the optimization of the 
bilinear FIR filters to achieve better output SINR values.

Example 1: Suppose there are Mt = 4 and Mr = 4 co-located 
antennas with half-wavelength spacing on the transmit and re-
ceive sides, respectively. Additionally, suppose there are three 
targets located at � = 0

◦, � = −45
◦, and � = −135

◦ with the 
desired transmit beam pattern shown in Figure 4. This desired 
beam pattern is compared with phased-array radar, MIMO radar, 
and phased-MIMO radar with k = 2 fully overlapped sub-arrays 
and equal weights. Based on the results in [24] and the results of 
beam pattern matching design, the corresponding transmit cova-
riance matrix for the desired beam pattern is defined as follows:

Additionally, the number of time extensions required to im-
plement STC is N = 4, which is equivalent to the rank of the 

transmit covariance matrix in this example. This covariance 
matrix indicates that each waveform in an individual trans-
mitter is not fully correlated like phased-array radar or fully 
uncorrelated like MIMO radar. Traditionally, to implement 
this transmit covariance matrix, phased-MIMO radar with a 
predesigned weight or correlated MIMO radar scheme was 
used, but these methods required different types of signal gen-
erators. Our proposed method using STC has much simpler 
hardware and software requirements. The proposed method 
can be implemented using simple phased-array radar and STC 
with N = 4 time extensions. Simulation is performed over 100 
000 iterations to achieve the desired covariance matrix. Based 
on (9) and the SVD decomposition of the desired transmit co-
variance matrix in (34), the corresponding STC matrix can be 
derived as A = UΣ1∕2�, where U and Σ are derived in this 
example as

and

respectively, where � is a Gaussian matrix of size Mt × N 
with zero mean and an identity covariance matrix. The corre-
sponding transmit beam pattern is illustrated in Figure 4 and 
compared with the patterns generated by MIMO radar and 
phased-array systems.

One of the main advantages of the proposed scheme is 
its compatibility with multi-target scenarios. Any arbitrary 

(30)Lc + 1 > 2K, ie, Kmax =

⌈

Lc − 1

2

⌉

,

(31)Kmax, MIMO ∈

[

Mt + Mr − 2

2
,

MtMr + 1

2

)

.

(32)Kmax, Ph ∈

[

Mr − 1

2
,

Mr + 2

2

)

.

(33)Kmax, Ph-MIMO ∈

[

rPh-MIMO + Mr − 2

2
,

rPh-MIMOMr + 1

2

]

.

(34)

Rnew =

⎡

⎢

⎢

⎢

⎢

⎣

1 0.28−0.90i 0.11+0.05i 0.72+0.12i

0.28−0.90i 1 0.08+0.20i 0.29+0.63i

0.11−0.05i 0.08−0.02i 1 0.07+0.29i

0.72−0.12i 0.29+0.63i 0.07−0.28i 1

⎤

⎥

⎥

⎥

⎥

⎦

.

(35)

U =

⎡

⎢

⎢

⎢

⎢

⎣

−0.60+0.00i −0.12+0.00i 0.45−0.00i −0.64−0.00i

−0.17+0.56i −0.25−0.00i −0.12−0.25i 0.29+0.63i

−0.02−0.02i −0.41+0.81i 0.20+0.25i 0.07+0.28i

−0.53+0.08i 0.23+0.19i −0.71+0.31i 1.00+0.00i

⎤

⎥

⎥

⎥

⎥

⎦

(36)
�

=

⎡

⎢

⎢

⎢

⎢

⎣

2.5928 0.0000 0.0000 0.0000

0.0000 1.1704 0.0000 0.0000

0.0000 0.0000 0.2351 0.0000

0.0000 0.0000 0.0000 0.0018

⎤

⎥

⎥

⎥

⎥

⎦

,

F I G U R E  4   Normalized transmit beam pattern for Example 1
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transmit covariance matrix and corresponding STC matrix 
can be derived using the proposed method. The cost of the 
proposed method is also much lower than that of traditional 
phased-MIMO and correlated MIMO radar because only one 
type of signal generator must be deployed.

Example 2: Suppose there are Mt = 8 and Mr = 8 co-located 
antennas with half-wavelength spacing on the transmitter and 
receiver sides, respectively. Additionally, suppose that N = 8 
time extensions are used to implement STC and that there are 
two targets located at � = 30

◦ and � = 150
◦ with the desired 

transmit beam pattern shown in Figure 5. Then, there are K = 5 
fully overlapped sub-arrays with equal weights in the phased-
MIMO radar scheme. The corresponding STC matrix can be 
derived easily, similar to the previous example (which is not 
detailed here based on space limitations).

Suppose that there are two interferences located at 
�1 = −60◦ and �2 = 45◦ that affect the received signal 
strength and that the INR is constant at 15 dB. SINR versus 
SNR values were simulated based on the proposed receive FIR 
filter design. The results are presented in Figure 6. One can see 
that as the number of time extensions increases, a better SINR 

is achieved. For N = 13 and SNR = 12 dB, the SINR gap be-
tween the proposed design and phased array, which can only 
track one target, is approximately 2.24 dB.

8  |   CONCLUSION

The proposed scheme provides additional degrees of free-
dom in transmit signal design. We demonstrated that with the 
proposed design, diversity can be improved and the desired 
covariance matrix can be derived easily by using a phased-
array signal structure (fully correlated base waveforms) and 
by simply adjusting the STC values. Diversity is achieved by 
deploying and designing the STC as discussed in Section III. 
Therefore, STC is a key factor for providing additional de-
grees of freedom. Furthermore, the complexity of the trans-
mitter can be reduced and there is no need to use multiple 
different signal generators in a transmitter, which reduces 
cost significantly. At a receiver, received vectors are ana-
lyzed to improve radar performance in terms of the SINR. 
By using the proposed design, we achieved phased-MIMO 
radar with the desired covariance matrix based on STC and 
a phased-array radar signal structure. Additionally, it was 
demonstrated that CE BPSK waveforms can be used with 
the STC structure and the required STC matrix conditions 
can be derived. Furthermore, any arbitrary covariance matrix 
can be derived by using an STC matrix with a BPSK signal 
design, as shown in Figure 2. On the receiver side, a novel 
STC analysis method was proposed to optimize SINR values.
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