• Title/Summary/Keyword: phase-locked loop (PLL)

Search Result 414, Processing Time 0.022 seconds

Phase Locked Loop Sub-Circuits for 24 GHz Signal Generation in 0.5μm SiGe HBT technology

  • Choi, Woo-Yeol;Kwon, Young-Woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.281-286
    • /
    • 2007
  • In this paper, sub-circuits for 24 GHz phase locked 100ps(PLLs) using $0.5{\mu}m$ SiGe HBT are presented. They are 24 Ghz voltage controlled oscillator(VCO), 24 GHz to 12 GHz regenerative frequency divider(RFD) and 12 GHz to 1.5 GHz static frequency divider. $0.5{\mu}m$ SiGe HBT technology, which offers transistors with 90 GHz fMAX and 3 aluminum metal layers, is employed. The 24 GHz VCO employed series feedback topology for high frequency operation and showed -1.8 to -3.8 dBm output power within tuning range from 23.2 GHz to 26 GHz. The 24 GHz to 12 GHz RFD, based on Gilbert cell mixer, showed 1.2 GHz bandwidth around 24 GHz under 2 dBm input and consumes 44 mA from 3 V power supply including I/O buffers for measurement. ECL based static divider operated up to 12.5 GHz while generating divide by 8 output frequency. The static divider drains 22 mA from 3 V power supply.

A Low Jitter Dual Output Frequency Synthesizer Using Phase-Locked Loop for Smart Audio Devices (위상고정루프를 이용한 낮은 지터 성능을 갖는 스마트 오디오 디바이스용 이중 출력 주파수 합성기 설계)

  • Baek, Ye-Seul;Lee, Jeong-Yun;Ryu, Hyuk;Lee, Jongyeon;Baek, Donghyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.27-35
    • /
    • 2016
  • A Low jitter dual output frequency synthesizer for smart audio devices is described in this paper. It has been fabricated in a 1.8 V Dongbu $0.18-{\mu}m$ CMOS process. Output frequency is controlled by 3 rd order Sigma-Delta Modulation and digital divider. The frequency synthesizer has a size of $0.6mm^2$, frequency range of 0.6-200 MHz, loop bandwidth of 350 kHz, and rms jitter of 11.4 ps-21.6 ps.

A Design of Prescaler with High-Speed and Low-Power D-Flip Flops (고속 저전력 D-플립플롭을 이용한 프리스케일러 설계)

  • Park Kyung-Soon;Seo Hae-Jun;Yoon Sang-Il;Cho Tae-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.8 s.338
    • /
    • pp.43-52
    • /
    • 2005
  • An prescaler which uses PLL(Phase Locked Loop) must satisfy high speed operation and low power consumption. Thus the performance or TSPC(True Single Phase Clocked) D-flip flops which is applied at Prescaler is very important. Power consumption of conventional TSPC D-flip flops was increased with glitches from output and unnecessary discharge at internal node in precharge phase. We proposed a new D-flip flop which reduced two clock transistors for precharge and discharge Phase. With inserting a new PMOS transistor to the input stage, we could prevent from unnecessary discharge in precharge phase. Moreover, to remove the glitch problems at output, we inserted an PMOS transistor in output stage. The proposed flip flop showed stable operations as well as low power consumption. The maximum frequency of prescaler by applying the proposed D-flip flop was 2.92GHz and achieved power consumption of 10.61mw at 3.3V. In comparison with prescaler applying the conventional TSPC D-flip $flop^[6]$, we obtained the performance improvement of $45.4\%$ in the view of PDP(Power-Belay-Product).

A Study on X-band Frequency Synthesizer for Radar Transceiver (레이더 송수신기용 X 밴드 주파수 합성기에 관한 연구)

  • Park, Dong-Kook;Lee, Hyun-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.444-448
    • /
    • 2006
  • In this paper, a frequency synthesizer for X-band FMCW radars is proposed. Some X-band FMCW radars have been used as a level sensor for tanker ship and the resolution of the level sensor may be mainly depend on linearity of frequency sweep. For a linear frequency sweep. the proposed synthesizer employs a phase-locked loop using prescalars and a high speed digital PLL chip. The measured results show that the linear frequency sweep range is from 10 GHz to 11 GHz and the output power of the synthesizer is minium 7 dBm. and the phase noise is about -80 dBc/Hz at 100 KHz offset from 11 GHz.

Parallel operating technique for the stand alone PV PCS (독립형 태양광 인버터의 병렬 운전 기법)

  • Jeong, Ku-In;Kwon, Jung-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.6
    • /
    • pp.9-15
    • /
    • 2015
  • In this paper, a parallel operating technique for the stand alone photovoltaic (PV) power conditioning system (PCS) is proposed. The proposed parallel operating technique can increase the power rating of the system easily. Also, it provide three-phase connection function. The proposed technique does not separated master and slave system. Also, it does not use the separated synchronization line. Therefore, the PCS can supply continuous power even if one of the PCS breaks down. This technique is composed of a phase locked loop (PLL) control, droop control, current limit control and etc. Experimental result obtained on 2-kW prototype to verify the proposed technique.

Self-Oscillating Switching Technique for Current Source Parallel Resonant Induction Heating Systems

  • Namadmalan, Alireza;Moghani, Javad Shokrollahi
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.851-858
    • /
    • 2012
  • This paper presents resonant inverter tuning for current source parallel resonant induction heating systems based on a new self oscillating switching technique. The phase error is suppressed in a wide range of operating frequencies in comparison with Phase Locked Loop (PLL) techniques. The proposed switching method has the capability of tuning under fast changes in the resonant frequency. According to this switching method, a multi-frequency induction heating (IH) system is proposed by using a single inverter. In comparison with multi-level inverter based IH systems, the advantages of this technique are its simple structure, better transients and wide range of operating frequencies. A laboratory prototype was built with an operating frequency of 35 kHz to 55 kHz and 300 W of output power. The performance of the IH system shows the validity of the new switching technique.

Design of a High-Resolution DCO Using a DAC (DAC를 이용한 고해상도 DCO 설계)

  • Seo, Hee-Teak;Park, Joon-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1543-1551
    • /
    • 2011
  • Dithering scheme has been widely used to improve the resolution of DCO(Digitally Controlled Oscillator) in conventional ADPLLs(All Digital Phase Locked Loop). In this paper a new resolution improvement scheme is proposed where a simple DAC(Digital-to-Analog Converter) is employed to overcome the problems of dithering scheme. The frequencies are controled by varactors in coarse, fine, and DAC bank. The DAC bank consists of an inversion mode NMOS varactor. The other varactor banks consist of PMOS varactors. Each varactor bank is controlled by 8bit digital signal. The proposed DCO has been designed in a $0.13{\mu}m$ CMOS process. Measurement results shows that the designed DCO oscillates in 2.8GHz~3.5GHz and has a frequency tuning range of 660MHz and a resolution of 73Hz at 2.8GHz band. The designed DCO exhibits a phase noise of -119dBc/Hz at lMHz frequency offset. The DCO core consumes 4.2mA from l.2V supply. The chip area is $1.3mm{\times}1.3mm$ including pads.

A Charge Pump Circuit in a Phase Locked Loop for a CMOS X-Ray Detector (CMOS X-Ray 검출기를 위한 위상 고정 루프의 전하 펌프 회로)

  • Hwang, Jun-Sub;Lee, Yong-Man;Cheon, Ji-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.359-369
    • /
    • 2020
  • In this paper, we proposed a charge pump (CP) circuit that has a wide operating range while reducing the current mismatch for the PLL that generates the main clock of the CMOS X-Ray detector. The operating range and current mismatch of the CP circuit are determined by the characteristics of the current source circuit for the CP circuit. The proposed CP circuit is implemented with a wide operating current mirror bias circuit to secure a wide operating range and a cascode structure with a large output resistance to reduce current mismatch. The proposed wide operating range cascode CP circuit was fabricated as a chip using a 350nm CMOS process, and current matching characteristics were measured using a source measurement unit. At this time, the power supply voltage was 3.3 V and the CP circuit current ICP = 100 ㎂. The operating range of the proposed CP circuit is △VO_Swing=2.7V, and the maximum current mismatch is 5.15 % and the maximum current deviation is 2.64 %. The proposed CP circuit has low current mismatch characteristics and can cope with a wide frequency range, so it can be applied to systems requiring various clock speed.

Phase Noise Compensation in OFDM Communication System by STFBC Method (OFDM 통신 시스템에서 STFBC 기법을 이용한 위상잡음 보상)

  • Li Yingshan;Ryu Heung-Gyoon;Jeong YoungHo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.1043-1049
    • /
    • 2005
  • In OFDM system suitable for high capacity high speed broadband transmission, ICI caused by phase noise degrades system performance seriously by destroying the orthogonality among subcarriers. In this paper, a new STFBC method combining ICI self cancellation scheme and antenna, time, frequency diversity is studied to reduce ICI effectively. CPE and ICI are analyzed by the phase noise linear approximation method in the proposed STFBC OFDM system. CIR, PICR and BER are discussed to compare the system performance degraded by phase noise of PLL. As results, STFBC method significantly reduces ICI. Furthermore, the SCI that usually happens in the traditional STBC, SFBC diversity coding method can be easily avoided.

A Study on the Efficiency Improvement Method of Photovoltaic System Using DC-DC Voltage Regulator (DC-DC 전압 레귤레이터를 이용한 태양광전원의 효율향상 방안에 관한 연구)

  • Tae, Donghyun;Park, Jaebum;Kim, Miyoung;Choi, Sungsik;Kim, Chanhyeok;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.704-712
    • /
    • 2016
  • Recently, the installation of photovoltaic (PV) systems has been increasing due to the worldwide interest in eco-friendly and infinitely abundant solar energy. However, the output power of PV systems is highly influenced by the surrounding environment. For instance, a string of PV systems composed of modules in series may become inoperable under cloudy conditions or when in the shade of a building. In other words, under these conditions, the existing control method of PV systems does not allow the string to be operated in the normal way, because its output voltage is lower than the operating range of the grid connected inverter. In order to overcome this problem, we propose a new control method using a DC-DC voltage regulator which can compensate for the voltage of each string in the PV system. Also, based on the PSIM S/W, we model the DC-DC voltage regulator with constant voltage control & MPPT (Maximum Power Point Tracking) control functions and 3-Phase grid connected inverter with PLL (Phase-Locked Loop) control function. From the simulation results, it is confirmed that the present control method can improve the operating efficiency of PV systems by compensating for the fluctuation of the voltage of the strings caused by the surrounding conditions.