• 제목/요약/키워드: perturbed differential systems

검색결과 51건 처리시간 0.023초

BOUNDEDNESS FOR NONLINEAR PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Im, Dong Man
    • 충청수학회지
    • /
    • 제29권4호
    • /
    • pp.585-598
    • /
    • 2016
  • This paper shows that the solutions to the nonlinear perturbed differential system $$y^{\prime}=f(t,y)+{\int_{t_0}^{t}}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$$, have bounded properties. To show these properties, we impose conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of h-stability.

UNIFORMLY LIPSCHITZ STABILITY AND ASYMPTOTIC PROPERTY IN PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS

  • CHOI, SANG IL;GOO, YOON HOE
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제23권1호
    • /
    • pp.1-12
    • /
    • 2016
  • This paper shows that the solutions to the perturbed differential system $y^{\prime}=f(t, y)+\int_{to}^{t}g(s,y(s),Ty(s))ds+h(t,y(t))$ have asymptotic property and uniform Lipschitz stability. To show these properties, we impose conditions on the perturbed part $\int_{to}^{t}g(s,y(s),Ty(s))ds+h(t,y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y).

BOUNDEDNESS IN THE NONLINEAR PERTURBED DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • GOO, YOON HOE
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제23권2호
    • /
    • pp.105-117
    • /
    • 2016
  • This paper shows that the solutions to the nonlinear perturbed differential system $y{\prime}=f(t,y)+\int_{t_0}^{t}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$, have the bounded property by imposing conditions on the perturbed part $\int_{t_0}^{t}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$, and on the fundamental matrix of the unperturbed system y′ = f(t, y) using the notion of h-stability.

웨이블릿 및 시스템 분할을 이용한 특이섭동 선형 시스템 해석 (Wavelet-based Analysis for Singularly Perturbed Linear Systems Via Decomposition Method)

  • 김범수;심일주
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1270-1277
    • /
    • 2008
  • A Haar wavelet based numerical method for solving singularly perturbed linear time invariant system is presented in this paper. The reduced pure slow and pure fast subsystems are obtained by decoupling the singularly perturbed system and differential matrix equations are converted into algebraic Sylvester matrix equations via Haar wavelet technique. The operational matrix of integration and its inverse matrix are utilized to reduce the computational time to the solution of algebraic matrix equations. Finally a numerical example is given to demonstrate the validity and applicability of the proposed method.

An Implementation Method of Linearized Equations of Motion for Multibody Systems with Closed Loops

  • Bae, D.S.
    • 한국공작기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.71-78
    • /
    • 2003
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre-multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the variables are tightly coupled by the position, velocity, and acceleration level coordinates, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all variables, which are coupled by the constraints. The position velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The Perturbed constraint equations are then simultaneously solved for variations of all variables only in terms of the variations of the independent variables. Finally, the relationships between the variations of all variables and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent variables variations.

구속된 다물체 시스템의 선형화에 관한 연구 (A Linearization Method for Constrained Mechanical Systems)

  • 배대성;최진환;김선철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.893-898
    • /
    • 2004
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the coordinates, velocities, and accelerations are tightly coupled by the position, velocity, and acceleration level constraints, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all coordinates, velocities, and accelerations, which are coupled by the constraints. The position, velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The perturbed constraint equations are then simultaneously solved for variations of all coordinates, velocities, and accelerations only in terms of the variations of the independent coordinates, velocities, and accelerations. Finally, the relationships between the variations of all coordinates, velocities, accelerations and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent coordinate, velocity, and acceleration variations.

  • PDF

Some Asymptotic Stability Theorems in the perturbed Linear Differential System

  • An, Jeong-Hyang;Oh, Yong-Sun
    • 한국산업정보학회논문지
    • /
    • 제7권1호
    • /
    • pp.75-80
    • /
    • 2002
  • 미분시스템의 안정성에 관한 이론에서 페론 방법은 각 개념의 정의와 적분부등식을 통해서 해의 정성적 규명을 연구하는 최근에 가장 일반적 형식 중의 하나이다. 이 논문을 통해서는 특히, 두 개의 섭동 e(t,x)와 f(t,x)를 수반하는 미분 시스템의 자명해와 접근적 안정성의 여러 가지 양태를 페론 방법을 써서 조사해 보고 이들의 충분조건을 찾아 몇 가지 정리를 얻었다.

  • PDF

A Computer Oriented Solution for the Fractional Boundary Value Problem with Fuzzy Parameters with Application to Singular Perturbed Problems

  • Asklany, Somia A.;Youssef, I.K.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12호
    • /
    • pp.223-227
    • /
    • 2021
  • A treatment based on the algebraic operations on fuzzy numbers is used to replace the fuzzy problem into an equivalent crisp one. The finite difference technique is used to replace the continuous boundary value problem (BVP) of arbitrary order 1<α≤2, with fuzzy boundary parameters into an equivalent crisp (algebraic or differential) system. Three numerical examples with different behaviors are considered to illustrate the treatment of the singular perturbed case with different fractional orders of the BVP (α=1.8, α=1.9) as well as the classical second order (α=2). The calculated fuzzy solutions are compared with the crisp solutions of the singular perturbed BVP using triangular membership function (r-cut representation in parametric form) for different values of the singular perturbed parameter (ε=0.8, ε=0.9, ε=1.0). Results are illustrated graphically for the different values of the included parameters.

구속된 다물체시스템의 선형화에 관한 연구 (A Linearization Method for Constrained Mechanical System)

  • 배대성;양성호;서준석
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1303-1308
    • /
    • 2003
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre-multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of ail relative coordinates, velocities, and accelerations. Since the coordinates, velocities, and accelerations are tightly coupled by the position, velocity, and acceleration level constraints, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all coordinates, velocities, and accelerations, which are coupled by the constraints. The position, velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The perturbed constraint equations are then simultaneously solved for variations of all coordinates, velocities, and accelerations only in terms of the variations of the independent coordinates, velocities, and accelerations. Finally, the relationships between the variations of all coordinates, velocities, accelerations and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent coordinate, velocity, and acceleration variations.

PERTURBATIONS OF FUNCTIONAL DIFFERENTIAL SYSTEMS

  • Im, Dong Man
    • 충청수학회지
    • /
    • 제32권2호
    • /
    • pp.225-238
    • /
    • 2019
  • We show the boundedness and uniform Lipschitz stability for the solutions to the functional perturbed differential system $$y^{\prime}=f(t,y)+{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{t_0}}^t}g(s,y(s),\;T_1y(s))ds+h(t,y(t),\;T_2y(t))$$, under perturbations. We impose conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s)$, $T_1y(s))ds$, $h(t,y(t)$, $T_2y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of h-stability.