• 제목/요약/키워드: periodic doubling bifurcation

검색결과 12건 처리시간 0.029초

넓은 수평 환형 공간에서의 혼동 열 대류 : Pr=0.1 (Chaotic Thermal Convection in a Wide-Gap Horizontal Annulus : Pr=0.1)

  • 유주식;엄용균
    • 설비공학논문집
    • /
    • 제13권2호
    • /
    • pp.88-95
    • /
    • 2001
  • Transition to chaotic convection is investigated for natural convection of a fluid with Pr=0.1 in a wide-gap horizontal annuls. The unsteady two-dimensional stream-function-vorticity equation is solved with finite difference method. As the Rayleigh number is increased, the steady 'downward flow' bifurcates to a time-periodic flow with a fundamental frequency, and afterwards a period-doubling bifurcation occurs. As the Rayleigh number is increased further, the chaotic flow regime is reached after a sequence of successive Hopf bifurcation to quasi-periodic and chaotic flow regimes. The route to chaos shows the Ruelle-Takens-Newhouse scenario. The flow of chaotic regime displays complex coalescence and separation of eddies in the side and lower region of the annulus.

  • PDF

수평 환형 공간에서의 진동하는 열대류 (OSCILLATORY THERMAL CONVECTION IN A HORIZONTAL ANNULUS)

  • 유주식
    • 한국전산유체공학회지
    • /
    • 제11권2호
    • /
    • pp.49-55
    • /
    • 2006
  • This study investigates the oscillatory thermal convection of a fluid with Pr=0.02 in a wide-gap horizontal annulus with constant heat flux inner wall. When Pr=0.02, dual steady-state flows are not found. After the first Hopf bifurcation from a steady to a time-periodic flow, five successive period-doubling bifurcations are recorded before chaos. The power spectrum shows the $period-2^4\;and\;2^5$ flows clearly, and a window of period $3{\times}2^3$ flow is found in the chaotic regime. The approximate value of the Feigenbaum number for the last three period-doubling bifurcations is 4.76. The transition route to chaos of the present simulations is consistent with the period-doubling route of Feigenbaum.

DYNAMICS OF A DISCRETE RATIO-DEPENDENT PREDATOR-PREY SYSTEM INCORPORATING HARVESTING

  • BAEK, HUNKI;HA, JUNSOO;HYUN, DAGYEONG;LEE, SANGMIN;PARK, SUNGJIN;SUH, JEONGWOOK
    • East Asian mathematical journal
    • /
    • 제31권5호
    • /
    • pp.743-751
    • /
    • 2015
  • In this paper, we consider a discrete ratio-dependent predator-prey system with harvesting effect. In order to investigate dynamical behaviors of this system, first we find out all fixed points of the system and then classify their stabilities by using their Jacobian matrices and local stability method. Next, we display some numerical examples to substantiate theoretical results and finally, we show numerically, by means of a bifurcation diagram, that various dynamical behaviors including cycles, periodic doubling bifurcation and chaotic bands can be existed.

수평 환형 공간에서의 혼돈 열대류로의 분기 (Bifurcation to Chaotic Thermal Convection in a Horizontal Annulus)

  • 유주식;김용진
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1210-1218
    • /
    • 2000
  • Thermal convection in a horizontal annulus is considered, and the bifurcation phenomena of flows from time-periodic to chaotic convection are numerically investigated. The unsteady two-dimensional streamfunction-vorticity equation is solved with finite difference method. As Rayleigh number is increased, the steady flow bifurcates to a time-periodic flow with a fundamental frequency, and afterwards a period-tripling bifurcation occurs with further increase of the Rayleigh number. Chaotic convection is established after a period-doubling bifurcation. A periodic convection with period 4 appears after the first chaotic convection. At still higher Rayleigh numbers, chaotic flows reappear.

DC/DC 컨버터의 파라미터 변동에 따른 분기 특성 (Bifurcation Characteristics of DC/DC Converter with Parameter Variation)

  • 오금곤;조금배;김재민;조진섭;정삼용
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.650-654
    • /
    • 1999
  • In this paper, author describe the simulation results concerning the period doubling bifurcation route to chaos of DC/DC boost converter under current mode control to show that it is common phenomena on switching regulator when parameters are improperly chosen or continuously varied beyond the ensured region by system designer. Bifurcation diagrams of periodic orbits of inductor current and capacitor voltage of DC/DC boost converter are plotted with sampled data at moment of each clock pulse causing switching on. DC/DC boost converter studied on this paper is modelled by its state space equations as per switching condition under continuous conduction mode. Current reference signal and capacitance are chosen as the bifurcation parameters and those are varied in step for iterative calculation to find bifurcation points of periodic orbits of state variables.

  • PDF

Period doubling of the nonlinear dynamical system of an electrostatically actuated micro-cantilever

  • Chen, Y.M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.743-763
    • /
    • 2014
  • The paper presents an investigation of the nonlinear dynamical system of an electrostatically actuated micro-cantilever by the incremental harmonic balance (IHB) method. An efficient approach is proposed to tackle the difficulty in expanding the nonlinear terms into truncated Fourier series. With the help of this approach, periodic and multi-periodic solutions are obtained by the IHB method. Numerical examples show that the IHB solutions, provided as many as harmonics are taken into account, are in excellent agreement with numerical results. In addition, an iterative algorithm is suggested to accurately determine period doubling bifurcation points. The route to chaos via period doublings starting from the period-1 or period-3 solution are analyzed according to the Floquet and the Feigenbaum theories.

분기 모우드를 활용한 얇은 빔의 혼돈 역학에 관한 연구 (On the Chaotic Vibrations of Thin Beams by a Bifurcation Mode)

  • 이영섭;주재만;박철희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 춘계학술대회논문집; 전남대학교, 19 May 1995
    • /
    • pp.121-128
    • /
    • 1995
  • The results are summarized as what follows: 1) The modeling of thin beams, which is a continuous system, into a two DOF system yields satisfactory results for the chaotic vibrations. 2) The concept of "natural forcing function" derived from the eigenfunction of the bifurcation mode is very useful for the natural responses of the system. 3) Among the perturbation techniques, HBM is a good estimate for the response when the geometry of motion is known. 4) It is known that there exist periodic solutions of coupled mode response for somewhat large damping and forcing amplitude, as well as weak damping and forcing. 5) The route-to-chaos related with lateral instability in thin beams is composed of period-doubling and quasiperiodic process and finally follows discontinuous period-doubling process. 6) The chaotic vibrations are verified by using Poincare maps, FFT's, time responses, trajectories in the configuration space, and the very powerful technique Lyapunov characteristics exponents.exponents.

  • PDF

훅조인트로 연결된 축계의 비선형 비틀림 진동의 분기해석 :2-자유도계 모델 (Nonlinear Torsional Oscillations of a System incorporating a Hooke's Joint : 2-DOF Model)

  • 장서일
    • 한국소음진동공학회논문집
    • /
    • 제13권4호
    • /
    • pp.317-322
    • /
    • 2003
  • Torsional oscillations of a system incorporating a Hooke's joint are investigated by adopting a nonlinear 2-degree-of-freedom model. Linear and Van der Pol transformations are applied to obtain the equations of motion to which the method of averaging can be readily applied. Various subharmonic and combination resonances are identified with the conditions of their occurrences. Applying the method of averaging leads to the reduced amplitude- and phase-equations of motion, of which constant and periodic solutions are obtained numerically. The periodic solution which emerges from Hopf bifurcation point experiences period doubling bifurcation leading to infinite solution rather than chaotic solution.

Dynamics and instability of the Karman wake mode induced by periodic forcing

  • Mureithi, Njuki W.
    • Wind and Structures
    • /
    • 제7권4호
    • /
    • pp.265-280
    • /
    • 2004
  • This paper presents some fundamental results on the dynamics of the periodic Karman wake behind a circular cylinder. The wake is treated like a dynamical system. External forcing is then introduced and its effect investigated. The main result obtained is the following. Perturbation of the wake, by controlled cylinder oscillations in the flow direction at a frequency equal to the Karman vortex shedding frequency, leads to instability of the Karman vortex structure. The resulting wake structure oscillates at half the original Karman vortex shedding frequency. For higher frequency excitation the primary pattern involves symmetry breaking of the initially shed symmetric vortex pairs. The Karman shedding phenomenon can be modeled by a nonlinear oscillator. The symmetrical flow perturbations resulting from the periodic cylinder excitation can also be similarly represented by a nonlinear oscillator. The oscillators represent two flow modes. By considering these two nonlinear oscillators, one having inline shedding symmetry and the other having the Karman wake spatio-temporal symmetry, the possible symmetries of subsequent flow perturbations resulting from the modal interaction are determined. A theoretical analysis based on symmetry (group) theory is presented. The analysis confirms the occurrence of a period-doubling instability, which is responsible for the frequency halving phenomenon observed in the experiments. Finally it is remarked that the present findings have important implications for vortex shedding control. Perturbations in the inflow direction introduce 'control' of the Karman wake by inducing a bifurcation which forces the transfer of energy to a lower frequency which is far from the original Karman frequency.

Topological Analysis of Chaos Characteristics in a Power System

  • Li, Shan-Ying;Lee, Sang-Seung;Park, Jong-Keun
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권1호
    • /
    • pp.18-25
    • /
    • 2004
  • This paper proposes a totally new method in the chaos characteristics' analysis of power systems, the introduction of topological invariants. Using a return histogram, a bifurcation graph was drawn. As well, the periodic orbits and topological invariants - the local crossing number, relative rotation rates, and linking number during the process of period-doubling bifurcation and chaos were extracted. This study also examined the effect on the topological invariants when the sensitive parameters were varied. In addition, the topological invariants of a three-dimensional embedding of a strange attractor were extracted and the result was compared with those obtained from differential equations. This could be a new approach to state detection and fault diagnosis in dynamical systems.