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Topological Analysis of Chaos Characteristics in a Power System

Shan-Ying Li*, Sang-Seung Lee** and Jong-Keun Park*

Abstract - This paper proposes a totally new method in the chaos characteristics’ analysis of power
systems, the introduction of topological invariants. Using a return histogram, a bifurcation graph was
drawn. As well, the periodic orbits and topological invariants — the local crossing number, relative
rotation rates, and linking number during the process of period-doubling bifurcation and chaos were
extracted. This study also examined the effect on the topological invariants when the sensitive
parameters were varied. In addition, the topological invariants of a three-dimensional embedding of a
strange attractor were extracted and the result was compared with those obtained from differential
equations. This could be a new approach to state detection and fault diagnosis in dynamical systems.
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1. Introduction

Loads in a power system have become rather
complicated in recent years. It is difficult for the power
system to stay in one equilibrium point, and it may
sometimes operate beyond the limit of its stability. This
situation creates concern regarding the bifurcation and
chaotic attractors in practice. Even if the power system is
dynamically stable, it can exhibit a bounded, random
behavior when the stable operating points are perturbed to
the attracting region of chaos. This originates from the
nonlinear and deterministic structure of the power system
itself but not from random load disturbances [1, 2].
Therefore, chaotic analysis can lead to a clearer
understanding of the problem of stability and become a
useful technique for the control and operation of power
systems. Because the essence of chaos is the strange
attractor [3], it is important to study its characteristics.

Currently, there are two main approaches for analyzing
the chaotic time series in a dynamical system. They are
metric [4, 5] and topological [6-10] approaches. The metric
approach is based on the distance between the points in the
attractor [6]. In this approach it is customary to compute
the fractal dimension, the Lyapnov exponent, and the
spectrum singularities, etc. It generally requires a large
amount of data and degrades rapidly with additive noise.
The topological approach is based on the organization of
unstable periodic orbits embedded in the strange attractor
[6]. It is responsible for creating a strange attractor using
stretching and squeezing mechanisms. Some quantities can
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present how the periodic orbits are knotted and linked to each
other. The extraction of these quantities from the time series
data is robust against noise and is independently verifiable [7].
These quantities are defined as topological invariants that are
effective in modeling the dynamic system.

This paper is organized as follows. The next section
introduces the topological invariants, the local crossing
number, the relative rotation rates and the linking numbers,
and describes how to extract them from the periodic orbits.
In Section 3, the topological invariants in a simple power
system are calculated and the stability is analyzed as the
parameters are changed. The topological invariants were
also extracted directly from the periodic orbits
reconstructed from the time series and the result was
compared to those computed from the equation. The
conclusions are reported in Section 4.

2. Extraction of Topological Invariants

When the system is in a chaotic state, the strange
attractor appears to be in disorder. However, this is the
result of the superposition of infinite periodic orbits and
non-periodic orbits. The skeleton of the strange attractor
consists of infinite periodic orbits. The following
computation of topological invariants is based on the
periodic orbits extracted from the strange attractor.

2.1 Local Crossing Number

The local crossing number is the number of half-twists
of the period-doubled orbit along the tubular neighborhood
[9]. It is an important index that describes the period-
doubled process. As an example, an illustration of a
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sequence of period-doubling bifurcation is shown in Fig. 1
(from Fig. 2 in Ref. [9]) to explain the local crossing
number. The sequence begins with an orbit having a period
of one (see Fig. 1a). Its tubular neighborhood is provided
in Fig. 1b. After the first period-doubling bifurcation, the
2'-period orbit sits on the surface of the tubular
neighborhood as illustrated in Fig. 1c. The number of half
twists of the doubled orbit along the tubular neighborhood
is 3. Therefore, its local crossing number C,; is 3. In this
case, the number of crossings of the projected orbit in Fig.
1d is equal to the local crossing number C,. The above
method can be used to calculate local crossing number of the

2%-periodic orbit as well as the other periodic doubling orbits.
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Fig. 1 A sequence of period-doubling bifurcation

The local crossing numbers increase during the process
of period doubling. Simultaneously, there is a recurring
relationship among the local crossing number of the
continuous period-doubling orbits

+2C (D

where C, stands for the local crossing number of the 2"
periodic orbit.

2.2 Relative Rotation Rates — RRR (Self-Relative
Rotation Rates — SRRR) and Linking Number —
L (Self-Linking Number — SL)

The topological organization of all the unstable periodic
orbits extracted from the time series is determined by
calculating the relative rotation rates and linking the
numbers of all pairs of periodic orbits, the self-relative
rotation rates and self-linking number of each individual
periodic orbit.

The RRR describe how often one orbit rotates around
another on average [6]. They are defined as follows: Two
orbits A and B, of periods ps and pg, intersect a Poincare
section in the p, and pp points, respectively. A difference
vector between one of the intersections of A and one of the
intersections of B with the Poincare section is the
propagated forward in time. As it evolves, this difference
vector rotates in a plane transverse to the propagation
direction. Eventually it will return to its initial position

(after papp period). This requires an inter rotation through
2x radians. The relative rotation rate, for this pair of initial
conditions, is this integer divided by the number of periods,
or the average rotation per period. The sum of the RRR
notes over all the pairs of initial conditions is the linking
number that links the two periodic orbits [6].

Calculating the RRR by the definition above is quite
difficult. Ref. [6] introduces a new method for determining
the RRR using a permutation matrix P and crossing matrix
C, where matrix P describes the forward time evolution of
the system and matrix C describes how the orbit segments
cross over each other. Furthermore, matrix RRR and L
(A,B) between a period, p, and an orbit, A, and a period, g,
and an orbit, B, can be defined as

prg-1
2*p*q*RRR=Z((PT)k*C*Pk) 2

k=0

3 R, (A.B) ®

J=1

L(A,B) =

V4
i=1

Note that the RRR can provide the phase information
tacking in the linking numbers. The topological properties
are closely linked to physical processes and are often
insensitive to noise changes, which are advantages in
modeling the system [7].

3. Extraction and Analysis of Topological
Invariants in a Simple Power System

This section presents the topological properties of the
double-periodic bifurcation and chaos on a detailed model.

3.1 A Simple Power System
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Fig. 2 A simple three-bus system

Consider the power system shown in Fig. 2, which
consists of a load that is supplied by two generators [1]. An
induction motor in parallel with a constant PQ load is used
to represent the load. The equation of this system consists
of four state variables that correspond to the generator
angle (8,), the generator angular velocity (®), the angle (8)
and the magnitude (V) of the load voltage. The load reactive
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power is chosen as the system parameter, so that increasing Q,
corresponds to increasing the load reactive power demand. Ref.
[1] provides detailed system equations of this model. In this
paper, all the angles were measured in radians and all the
variables and constants are reported in per unit.
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3.2 Topological Properties of Double Period
Bifurcation

Many studies have found that chaos exists via a period-
doubling route in this model (see Ref. [1, 2]). The
bifurcation diagram can exhibit the richest qualitative
behavior, as shown in Fig. 3, where the phase-space
coordinate is taken by sampling the load voltage V when
& crosses the oscillation center in the decreasing direction.

Fig. 3 shows that the power system is stable near Q; =11.39.

As Q is slowly decreased, the period 2 orbit grows at Q
=11.3885, and then undergoes a sequence of a period-
doubling bifurcation, leading to chaos. Fig. 4 presents
several stable periodic orbits in the sequence of period
doubling discussed above, along with the strange attractor
resulting from the period doubling cascade.

The topological invariants extracted from the stable period-
doubling orbits are shown in Table 1 and Table 2. The
result in Table 1 indicates that that local crossing numbers
increase gradually as the period doubles and on the
continuous periodic orbits there is an extrapolation relation
that has been discussed in Section 2. Since there is a close
relationship between the local crossing number and the
power spectrum of the orbit, the harmonics components are
necessarily increased with periodic doubling, namely,
heavy oscillation can occur with the period-doubling
bifurcation process.
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Fig. 4 Period doubling cascade to chaos

Table 1 Local crossing number of period-doubling bifurcation

Period 1 2 4 8
Lof & 0 1 3 5
LofV 0 1 3 5

Table 2 Relative rotation rates and linking numbers of
period-doubling bifurcation

Period 1 2 4 8
1 0 -12 -1/2 172
2 12,0 -172,-1/4  -1/2,-1/4
4 (-1/2)%,-1/40  (-1/2)%,-1/4,-3/8
8 (-1/2%,(-1/4)%.-3/8,0
(a) RRR of period-doubling bifurcation
Period 1 2 4 8
1 0 1 2 4
2 1 3 6
4 5 13
8 23

(b) L of period-doubling bifurcation

For the other two topological invariants, we note that,
the self-RRR of the period 1 orbit is 0 and the RRR
between the period 1 orbit and the other orbits, the Inter-
RRR, have the same value, —1/2. The self-RRRs of the
period 2 orbit are 0 and —1/2, which include the self-RRR
and the inter-RRR of period 1. Simultaneously, the inter-
RRR of the period 2 orbit has the same values, —1/2 and —
1/4. Furthermore, the self-RRR of the period 4 orbit
contains not only the entire self-RRR of the period 1 and 2
orbits but also new information, —1/4. For the period 8
orbit, the conclusion is similar.

Not much information could be obtained from the
linking-number in Table 2(b). This is because the linking
number consists of a sum of the RRR on the arbitrary
original condition, which often offsets some information.

From the above analysis it can be seen that the
topological properties of period 2" contain all of the
topological information in the period 1, 2,..., 2™! orbits and
the larger the period the richer the information that can be
observed. This means that the orbit structure from period 1
to period 2" can be determined if the period 2" orbit twist is
known,
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3.3 Topological Characteristics in Chaos State

In section 2 it can be seen that once the hyperbolic
structure of chaos is defined, there is a one to one
correspondence between the periodic orbits and the flow,
namely, the topological invariants. Therefore, if the
topological invariants change, the structure of the strange
attractor also changes. As such, different chaos attractors
can be identified.

For the forth order model, chaos is observed in the
approximate range Q;=11.377-11.382 (see Fig. 3). In order
to extract the unstable period orbit in the strange attractor,
the fundamental period needs to be determined first. From
Fig. 5 we can obtain the fundamental periodic of the
unstable period orbit at Q;=11.379, which is approximately
2.1s according to the relationship between T and o ,
=21 /T=2.99, which is the imaginary part of the complex
eigenvalues at Q,=11.379. The unstable period orbits can
then be extracted (see Fig. 6) and the topological invariants
can be calculated (see Tab. 3).
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Fig. 6 Extraction of period orbit at Q,=11.379

Indeed there is another chaos region induced from the
period-doubling  bifurcation around Q;=10.89 [1]
(fundamental period T=1.67s). The region corresponding
to Q;=10.89 is referred to as the left chaos; the region
corresponding to Q;=11.379 is known as the right chaos.
The topological invariants of the left chaos are shown in
Table 4.

The results in Table 3 and Table 4 are apparently

different, namely, the topological organization of two
attractors are different. This means that the characteristic of
the two attractors will change as Q, is varied. In Ref. [1], it
is noted that the attractor in the left chaos region will
disappear as Q, is increased, while the attractor in the right
chaos region will lead to a voltage collapse as Q; is
decreased. Conversely, the results in Table 3 and Table 4
suggest that the topological invariants are sensitive to
changes in the parameter and system structure, which will
contribute to the system state detection and fault diagnosis.

Table 3 Relative rotation rates and linking numbers at

Q=10.89
Period 1 2 3 4 6
1 0 -12 -1/3 -1/4 -173
2 -1/2,0  -1/3 -1/4 -1/3,-1/6
3 -1/3%0 -1/4 (-1/3)%-1/6
4 -1/4P°0 -1/4,-1/6
6 (-1/3)%,(-1/6)*,0
(a) Relative rotation rates
Period 1 2 3 4 6
1 0 1 1 1 2
2 1 2 3
3 2 3 5
4 3 5
6 7
(b) Linking number
Table 4 Relative rotation rates and linking numbers at
Q;=11.379
Period 1 2 3 4 6
1 0 -12 -1/3 -12 -1/3
2 -12,0  -173 -1/2,-1/4 -1/3,-1/6
3 13%, 0 -13  (-1/3%-1/6
4 -1/2%-1/40  -1/3
6 (-1/3)*-1/6,0
(a) Relative rotation rates
Period 1 2 3, 4 6
1 0 1 1 2 2
2 1 3 3
3 2 4 5
4 5 8
6 9
(b) Linking number

3.4 Effects of Parameter Changes Upon the System

Firstly, the effect of parameter kg, on the system is
considered.

According to the simulation results, voltage collapse and
angle divergence take place when k., is varied from 2.090
to 2.098. If a point kq,=2.092 is chosen in the range, then
the corresponding voltage and angle curve can be obtained,
as shown in Fig. 7.

Let kg, vary from 2.098 to 2.114, and draw a system
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bifurcation graph (see Fig. 8). It should be noted that, when
ko2 is gradually decreased from kg,»=2.114, the system
experiences bifurcation and a state of chaos. The
topological invariants extracted at k,»,=2.100 and
kqv2=2.103 are displayed in Tables 5 and 6. It is easy to see
that the topological invariants are almost the same except
for the RRR between the period 4 and 6 orbits and the
RRR between the period 1 and 6 orbits. Furthermore, the
topological invariants extracted from the high period orbit
can be used to detect the parameter changes. Note that it
does not signify that the higher the period the better the
result is. Therefore, how many periods should be extracted
depends upon the actual demand.
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Fig. 8 System bifurcation graph in the (ky,, V) plane

Table 5 Relative rotation rates and linking numbers at

kq2=2.100

Period 1 2 3 4 6

1 0 -12 -1/3 -12 -1/3

2 -172,0 -173 -1/2,-1/4 -1/3,-12

3 -1/3)%0 -1/3 -1/3

4 -1/ 2%1/4,0 -1/3,-5/12

6 ‘ -172,(-1/3)*,0

(a) Relative rotation rates

Period 1 2 3 4 6

1 0 1 1 2 2

2 1 3 5

3 2 4 6

4 5 9

6 11
(b) Linking number

In the following we will discuss effects of the other
parameters kg« kv Kpwe kgw on the voltage (see Fig. 9).
Here a brief account regarding Fig. 9 is given. The vertical
axis stands for the voltage and the horizontal axis stands
for every parameter, whose variable range is (-0.5%k, ,
+0.5% ku ), where ky denotes the parameter kg. Kpy~
Kpw+ kqw. From Fig. 9, it can be seen that, parameter kg,
kyv, kpw has a weak effect on the load voltage (see Fig. 9
(b)-(d)), while load voltage is sensitive to parameter kg,.

Table 6 Relative rotation rates and linking numbers at

Kqu2=2.103
Period 1 2 3 4 6

1 0 -12 -1/3 -112 12

2 12,0 -1/3 -1/2,-1/4 -1/3,-112

3 (-1/3)%0 -1/3 -1/3

4 -1/ 2)%1/4,0 -1/3,-112

6 (-1/2)*(-1/3)%,0

(a) Relative rotation rates

Period 1 2 3 4 6

1 0 1 1 2 3

2 1 3 5

3 2 4 6

4 5 10

6 13
(b) Linking number
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(d) Effect of parameter kg, on the voltage
Fig. 9 The effect of the parameters on the voltage

The analysis given above demonstrates that ko, and kg,
are sensitive parameters of the system because even subtle
changes can lead to a different state - stable, period
oscillation, chaos, collapse, where the chaos state can be
thought of as a transition process from the stable to
unstable state. Parameter kg, is the coefficient in front of
V2 in equations (8) and (9), which suggest that the
coefficients of the non-linear term in the model have the
dominant influence on the stability. Therefore, it is
important for operators to examine the equipments
concerned with these sensitive parameters. Once their
changes exceed the regulated range, appropriate actions
must be taken in order to avoid a large fault such as a
voltage collapse.

Although the topological invariants method is mainly
used to analyze the doubling-period bifurcation and chaos,
it is also an effective way to deal with a non-stable process.

3.5 Topological Characteristics from Time Series

The topological invariants discussed above are extracted
from the forth order model. If a model of the power system
is not known precisely, and only the measurement data is
available, i.e. time series, then the topological invariants
can still be extracted. This section will discuss this.

First, it is postulated that the system model is unknown
and only the time series V() of the magnitude of the
terminal voltage, which is the simulation results at
Q,=11.379, is available. Because the topological invariants
cannot be described unless a three-dimensional embedding
can be found, a three-dimensional embedding of the
strange attractor needs to be constructed. An integral-
differential filter is constructed [6], which is easily
implemented by an electronic circuit and reduces the S/N
(Signal/Noise) ratio.

YG)= Y V(e ®)

j<i

Y, =V(@) e

Y(O)=V@i+)-V(i-1) (10

The reconstructed attractor in R*is shown in Fig. 10. Fig.
11 depicts the fundamental period of the attractor (T=2.1s).
The attractor is projected on the phase-phase Y2-Y3 and
the unstable periodic orbits in it are extracted (see Fig. 12).

The topological invariants, shown in Table 7, can then
be calculated. It can be seen that the result is the same as
that presented in Table 4. However, we cannot be sure that
the topological organization of the two attractors (one is
from the time series and the other from the model) is
equivalent. The identity of the topological invariants is not
the necessary sufficient condition for the same topological
organization. In order to identify whether the two attractors
are equivalent, further research using template and
symbolic dynamics theory will be needed.

Fig. 10 Embedding of the strange attractor

8

Fig. 11 The return histogram
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Fig. 12 Extraction of the period orbit at Q,=11.379
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Table 7 Relative rotation rates and linking numbers

Period 1 2 3 4 6

1 0 -12 -13 12 -173

2 12,0 -1/3 -172,-1/4 -1/3,-1/6

3 -173%0 -1/3 -1/3)%,-1/6

4 (-1/2%-1/40 -1/3

6 (-1/3)*,-1/6,0

(a) Relative rotation rates

Period 1 2 3 4 6

1 0 1 1 2 2

2 1 2 3 3

3 2 4 5

4 5 8

6 9
(b) Linking number

It is more appropriate to analyze the chaotic behavior as
a function of time than by the model in practice. The
discussion in this section is more suitable for diagnosing a
fault in a practical power system.

4. Conclusion

This study analyzed the topological characteristics of a
simple power system. The analysis of the topological
invariants during period-doubling bifurcation show that the
period 2" orbit contains all the topological information of
the previous periodic orbits (period 1, 2, 2%..., 2™ orbits).
Moreover, the larger n is, the richer the topological
information that can be obtained. The topological
invariants can identify the attractor belonging to the
different chaos regions and the oscillation period can be
easily obtained by a return map and a return histogram. A
three-dimensional embedding was successfully constructed
from the time series, and topological invariants of time
series were found to be the same as those of the fourth-
differential equations. It is useful to analyze the
characteristic of a power system from a practical
perspective when a fault takes place. Comparing the results
to other topological invariants, the relative rotation rates
suggest the wealth of information, which is responsible for
creating a strange attractor. Therefore, the RRR can be
taken as a sensitive factor in a fault diagnosis since they
indicate whether or not the two dynamic systems are equal.
Note that the topological invariants are only sensitive to a
parameter variation that leads to qualitative changes in the
system, while they are insensitive for the quantitative
changes in the system.

In future works, it is hoped that the dynamics (stretching
and squeezing mechanisms) can be modeled by a horse-
holder template and symbolic dynamics theory based on
the topological invariants extracted from the model or the
experimental data sets. That would be a more appropriate

and effective approach for studying the dynamics rather
than the metric approach.

In addition, although this study focused on chaos via the
period-doubling bifurcation route, the method discussed
above is still valid for other routes that approach chaos.
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