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ABSTRACT. In this paper, we consider a discrete ratio-dependent predator-prey sys-
tem with harvesting effect. In order to investigate dynamical behaviors of this system,
first we find out all fixed points of the system and then classify their stabilities by
using their Jacobian matrices and local stability method. Next, we display some nu-
merical examples to substantiate theoretical results and finally, we show numerically,
by means of a bifurcation diagram, that various dynamical behaviors including cycles,
periodic doubling bifurcation and chaotic bands can be existed.

1. Introduction

In population dynamics, a number of continuous-time systems of predator-prey type
have been investigated by many researchers for several decades (see [2, 6, 8, 9, 10, 11,
13, 15, 16, 17, 18, 19]). However, sometimes it is useful to consider discrete-time sys-
tems described by difference equations, discrete dynamical systems or iterative maps.
For instance, many species of insect have no overlap between successive generations
and thus their population evolves in discrete-time steps ([15, 20]). Such a population
dynamics can be described by a sequence {xn}, for example, the well-known logistic
difference equation is modeled as

xn+1 = rxn(1− xn), (1)

where xn denotes the population of a single species in the n-th generation and r is the
intrinsic growth rate.

On the other hand, in recent years, many researchers have studied dynamical behav-
iors of predator-prey systems with nonzero harvesting rates of either species or both
species simultaneously(see [3, 7, 12, 15, 21, 22, 23]). In general, human needs are not
immutable for a long time. Actually, human needs could be changed according to the
amount of biological resources. It is an undoubted fact that nonconstant harvesting
method considering prey or predator populations is more efficient and economic than
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constant harvesting method. For the reason, it is needed to take into account harvest-
ing rate according to the species population. Thus, based on the above discussion, in
the paper, we consider the following ratio dependent predator-prey system with linear
harvesting rates ([3, 21]).

dx

dt
= rx(1− x)− axy

x+ y
− hx,

dx

dt
= −dy +

bxy

x+ y
− ky,

(2)

where x(t), y(t) denote prey and predator densities respectively, a, b and d stand for
the capturing rate, the conversion efficiency of prey into predators and the predator’s
death rate, respectively and h, k are nonnegative harvesting constants. System (2) has
been studied by the authors in [21] for the stability of non-hyperbolic equilibria and for
bifurcation phenomena including Hopf bifurcation. In [3], the author has investigated
the spatiotemporal complexity of system (2) with respective to h.

Another possible way to understand the complex dynamics of predator-prey system
is using discrete systems [1, 4, 5, 6, 14, 20, 24]. In the present work, we take into
account a discrete ratio-dependent prey-predator system with linear harvesting rate as
follows: 

xn+1 = rxn(1− xn)− axnyn
xn + yn

− hxn,

yn+1 = −dyn +
bxnyn
xn + yn

− kyn.
(3)

However, since −dyn − kyn = −(d+ k)yn, the dynamics of system (3) are the same
as the following system:

T :


xn+1 = rxn(1− xn)− axnyn

xn + yn
− hxn,

yn+1 = −dyn +
bxnyn
xn + yn

.
(4)

With an initial condition (x0, y0), the iteration of system (4) uniquely determines a
trajectory of the states of population output in the following form

(xn, yn) = Tn(x0, y0), (5)

where n = 0, 1, 2, · · · .
The main purpose of this paper is to investigate the dynamical behaviors of sys-

tem (4) near fixed points of system (4) and to illustrate some numerical simulation to
substantiate theoretical results.

2. Stability of fixed points of system (4)

From biological points of view, we will focus on the dynamical behaviors of system
(4) in the closed first quadrant R2

+ = {(x, y) ∈ R2|x ≥ 0, y ≥ 0}. First, we deter-
mine the existence of fixed points of system (4) by considering the following nonlinear
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system; 
x = rx(1− x)− axy

x+ y
− hx,

y = −dy +
bxy

x+ y
.

(6)

Then it follows from simple algebraic calculation that there exist at most three fixed
points of system (4) as follows:

(i) E0(0, 0) is the origin,
(ii) E1( r−h−1

r , 0) is the axial fixed point in the absence of predator (y = 0) and
(iii) E2(x∗, y∗) is the positive fixed point of system (4), where

x∗ =
a− b− ab+ ad− bh+ br

br
, y∗ =

b− d− 1

1 + d
x∗. (7)

From now no, for the existence of the positive fixed point E2, we assume that the
following conditions

a(d+ 1) + br > b(a+ h+ 1)

b > d+ 1
(8)

hold.
In order to investigate the local dynamical behaviors of system (4) around each of

the above fixed points, The Jacobian matrix of system (4) at the given state variable
must be considered, which is given by

J(x, y) =

r − 2rx− ay2

(x+ y)2
− h − ax2

(x+ y)2

by2

(x+ y)2
−d+

bx2

(x+ y)2

 . (9)

The characteristic equation of the Jacobian matrix J(x, y) can be obtained as

λ2 −B(x, y)λ+ C(x, y) = 0, (10)

whereB(x, y) is the trace andC(x, y) is the determinant of the Jacobian matrix J(x, y)
which is defined as

B(x, y) = r − h− d− 2rx− ay2

(x+ y)2
+

bx2

(x+ y)2
,

C(x, y) =
bx2(r − h− 2rx) + d(ay2 + h(x+ y)2 + r(2x− 1)(x+ y)2)

(x+ y)2
.

(11)

In order to study the stability of the fixed points of system (4), we give the following
lemma, which can be easily proved by the relations between roots and coefficients of
the quadratic equation[1, 15].

Lemma 2.1. Let F (λ) = λ2 − Bλ + C. Suppose that F (1) > 0, λ1 and λ2 are the
two roos of F (λ) = 0. Then

(i) |λ1| < 1 and |λ2| < 1 if and only if F (−1) > 0 and C < 1;
(ii) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) if and only if F (−1) < 0;
(iii) |λ1| > 1 and |λ2| > 1 if and only if F (−1) > 0 and C > 1;



746 H. BAEK, J. HA, D. HYUN, S. LEE, S. PARK, AND J. SUH

(iv) λ1 = −1 and λ2 6= 1 if and only if F (−1) = 0 and B 6= 0, 2;
(v) λ1 and λ2 are complex and |λ1| = |λ2| = 1 if and only if B2 − 4C < 0 and

C = 1.

Let λ1 and λ2 be the two roots of equation (10), which are called eigenvalues of
the fixed point (x, y). We recall some definitions of topological types for a fixed point
(x, y). A fixed point (x, y) is called a sink if |λ1| < 1 and |λ2| < 1, so the sink is
locally asymptotically stable. (x, y) is called a source if |λ1| > 1 and |λ2| > 1, so
the source is locally unstable. (x, y) is called a saddle if |λ1| < 1 and |λ2| > 1 (or
|λ1| > 1 and |λ2| < 1). And (x, y) is called non-hyperbolic if either |λ1| = 1 or
|λ2| = 1.

Theorem 2.2. For the fixed point E0, we have the following topological types:
(i) E0 is a sink if |d| < 1 and |r − h| < 1;
(ii) E0 is a source if |d| > 1 and |r − h| > 1;
(iii) E0 is a saddle if either |d| < 1 and |r − h| > 1 or |d| > 1 and |r − h| < 1;
(iv) E0 is non-hyperbolic if d = 1 or 0 < r = h± 1.

Proof. It is easy to get that the Jacobian matrix J at E0 is given by

J(E0) =

(
r − h 0

0 −d

)
. (12)

Hence the eigenvalues of the matrix are λ1 = r − h and λ2 = d. Therefore, it is clear
that (i)-(iv) hold. �

Theorem 2.3. If r > h + 1 holds, then there exists the fixed point E1( r−h−1
r , 0).

Moreover,
(i) E1 is a sink if |b− d| < 1 and 0 < r < h+ 3;
(ii) E1 is a source if |b− d| > 1 and r > h+ 3;
(iii) E1 is non-hyperbolic if |b− d| = 1 or r = h+ 3;
(iv) E1 is a saddle for the other values of parameters except those values in (i)-(iii).

Proof. The Jacobian matrix J of E1 can be obtained as

J(E1) =

(
h− r + 2 −a

0 b− d

)
. (13)

Thus elementary calculation yields that the eigenvalues of the matrix are λ1 = h−r+2
and λ2 = b− d. Since r > h+ 1, λ1 < 1. Thus one can have the results (i)-(iv). �

Now, we shall discuss the stability of the interior fixed point E2(x∗, y∗). To do this
we must think over the Jacobian matrix J(x∗, y∗) given by

J(x∗, y∗) =

r − 2rx∗ − a(y∗)2

(x+ y∗)2
− h − a(x∗)2

(x∗ + y∗)2

b(y∗)2

(x∗ + y∗)2
−d+

b(x∗)2

(x+ y∗)2

 . (14)
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As one sees, it is difficult to get eigenvalues of the matrix J(x∗, y∗) directly to analyze
the stability of system (4) at the fixed point E2(x∗, y∗). Thus we will use the Lemma
(2.1) to obtain the following proposition.

Theorem 2.4. Under the condition (8), there exists the fixed point E2 and
(i) E2 is a sink if ∆1 < h < ∆2;
(ii) E2 is a source if max{∆1,∆2} < h;
(iii) E2 is a saddle if h < ∆1;
(iv) E2 is non-hyperbolic if h = ∆1 and B 6= 0, 2,
where

∆1 = r − 3 +
a(b2(−1 + d)− 2b(1 + d)2 + (1 + d)2(3 + d))

b((1 + d)2 − b(d− 1))
,

∆2 = r − 2 +
a(b2d− 2b(1 + d)2 + (1 + d)2(2 + d))

b(d2 + (2− b)d+ 1)
.

(15)

Proof. First we calculate the parameters B(x∗, y∗) and C(x∗, y∗) of F (λ) = λ2 −
Bλ+ C in Lemma 2.1 as follows:

B(x∗, y∗) = a+ h− r + 2− d+
(b− a)(d+ 1)2

b2

C(x∗, y∗) = d(r − a− h− 2) +
(a(2b− d− 2) + b(h− r + 2))(d+ 1)2

b2
.

(16)

From this, we can obtain F (1) =
(d− b+ 1)(d+ 1)(a(b− d− 1) + b(h− r + 1))

b2
.

It follows from equation (8) that F (1) > 0, which satisfies the assumption of Lemma
2.1. Also, from (16) we can have that F (−1) =

a(b2(−d+ 1) + 2b(d+ 1)2 − (d+ 1)2(d+ 3)) + b(b(d− 1)− (d+ 1)2)(r − h− 3)

b2
.

Note that F (−1) > 0 and C < 1 hold if and only if ∆1 < h and h < ∆2 are satisfied,
respectively. Thus from Lemma 2.1 we can get the results of this theorem. �

3. Numerical Examples

In this section, to provide some numerical evidence for analytic results, especially
Theorem 2.4, obtained in section 2, the phase portraits and bifurcation diagrams will
be demonstrated.

In order to implement numerical examples, we regard the harvesting rate h of the
prey as a variable. Let the other parameters be as follows:

a = 3.6, b = 1.5, d = 0.2 and r = 3.2. (17)

If h = 0.9 is taken, then one can get the positive fixed point E2(x∗, y∗) = (0.1813,
0.0453). Elementary calculation yields that the values ∆1 = −1.1745 and ∆2 =
1.0379 in Theorem 2.4 are obtained. Thus it follows from Theorem 2.4 that the fixed
point E2 is stable. In fact, the eigenvalues of the matrix J(x∗, y∗) are λ1,2 = 0.8780±
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FIGURE 1. The fixed point E2(0.1813, 0.0453) of system (4) is sta-
ble when a = 3.6, b = 1.5, d = 0.2, r = 3.2 and h = 0.9.
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FIGURE 2. A limit cycle could be observed numerically in system
(4) when a = 3.6, b = 1.5, d = 0.2, r = 3.2 and h = 1.1 and
E2 = (0.1188, 0.0297) .

i0.3526 and then |λ1,2| = 0.9462. Figure 1 displays that the fixed point E2 is a stable
attractor at h = 0.9.

It deserves to note that a limit cycle could be observed numerically when the value
h varies increasing. To show such phenomena, let us take h = 1.1. One can know
from Theorem 2.4 that the fixed point E2(0.1188, 0.0297) becomes a source since
h > ∆1,∆2. In fact, if one takes an initial values (x0, y0) = (0.1198, 0.0307) one can
observe that the trajectory Tn(x0, y0) goes away from the fixed point E2 as n goes the
infinity as shown in Figure 2.
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FIGURE 3. The fixed point E2(0.5885, 0.1070) of system (4) is a
saddle point when a = 1.6, b = 1.3, d = 0.1, r = 4 and h = 0.4.

FIGURE 4. Bifurcation diagram of system (4) when a = 1.6, b =
1.3, d = 0.2, h = 0.5 and 3.5 ≤ r ≤ 4.5.

In other words, this figures shows that a stable limit cycle could exist, which is a
numerical evidence of the existence of Hopf bifurcation.

In order to illustrate a saddle phenomenon, we need to take another parameters set
such as

a = 1.6, b = 1.3, d = 0.1, r = 4 and h = 0.4. (18)

Then from Theorem 2.4, one can figure out that the fixed point E2(0.5885, 0.1070)
is a saddle point since ∆1 = 0.5263,∆2 = 2.7068, which is shown in Figure 3.

It is difficult to search out all dynamics of system (4) theoretically. However, using
bifurcation diagram, we can probe into numerically what kinds of dynamical behaviors
happen to system (4). In this context, we illustrate a typical bifurcation diagram in
Figure 4 for system (4) with respect to r when a = 1.6, b = 1.3, d = 0.2, h = 0.5 and
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3.5 ≤ r ≤ 4.5. The resulting bifurcation diagram clearly shows that system (4) has
rich dynamics including cycles, periodic doubling bifurcation, chaotic bands, periodic
windows etc.
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