B2 ARESAES| 19958 EAS@N2=FY pp.121-128

27 RPEE B g W
EE 3ol B A7

vol A, FAW, AN

(Young-Sup Lee, Jae-Man Joo, Chol-Hui Pak)

1. INTRODUCTION

The static and dynamic stability of a thin beam have
been widely investigated by many researchers, both
theoretically and experimentally, The lateral instability
under static loads is well known as a “lateral buckling”

’ and has been studied in elastic stability

of beams"
problems. Dynamic instability of simple structures under
periodic loads has been extensively treated by many
investigators in a theoretical Waym.

. . 3, 4
Experimental observations®™ *

provide many interesting
nonlinear dynamic features in a thin beam, but there are
only a few analytical methods reported to explain them.
Pak® recently utilized harmonic balance method(HBM)™
for the analysis of the lateral stability of a thin beam
under vperiodic bending loads. The eigenfunctions of
bifurcation modes, which play a role of the seeds of
newly-borme motion, are utilized for HBM and that
application produces satisfactory results in the analysis of
the dynamic lateral instability of a thin elastica. Further,
the natural forcing function was conceptually defined as
the variation of the eigenfunctions with respect to system
parameters. The introduction of the so-defined natural
forcing function provided a very convenient way of
calculating the responses of undamped and damped forced

vibrations.

« Azl 714 F8ta

The main objective of this work is to study the
chaotic dynamics of a thin beam under periodic bending
loads by one of bifurcation modes(called "nonlocal mode :
NLM™) which causes lateral instability.

The calculation of fractal dimension confirms us that a
thin elastica, which has infinite degrees of freedom since
it is a continuous systemn, can be modeled into a
low-dimension one to show the chaotic dynamics of the
system(:”. Hence the elastica is modeled into a two
degree-of-freedom system composed of the first bending
and the first torsional mode.

Nonlinear dynamic characteristics of the elastica are
generally investigated by Pak et al®. The easily-known
periodic motions of the elastica are torsion and bending
and their stability is examined by the perturbation
techniques. From the perturbation analysis, several
periodic bifurcation modes are found nonlinear normal
mode, elliptic orbit mode, and nonlocal mode.

Since the lateral instabilization and hence the chaotic
vibration are of interest, the nonlocal mode which is
generated due to stability change in torsional mode is
computed with the aid of HBM. Firstly evaluation of the
stability of periodic motions is generally overviewed to
apply the Synge’s concept(x', and then the free vibration
features of the bifurcation mode are examined. By the
natural forcing function, the responses are natural when

damping and forcing amplitude are weak. With the
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increment of them, the expected responses are shown for
narrower ranges of frequency.

Keeping the fact in mind that the computation is quite
reasonable for somewhat large damping and forcing, we
will testify the route-to-chaos of the system. The route
seems to be composed of quasi-periodic(Hopf bifurcation)
and mainly of period doubling process which can be
easily conjectured from the first generation of the
further

bifurcation mode(pitchfork bifurcation). With

process of bifurcation, there may appear the dynamic

)

two-well behavior® similarly as in a buckled-beam

)

system(g. As verifications, Poincaré maps, FFT's, and

Lyapunov exponents are employed.

2, SYSTEM

Consider a uniform and straight elastic rod which can
be bent and twisted(Fig. 1). For small motions of the rod,
the linear theory is applicable ; bending and torsion can
be decoupled so that solutions are obtained by the
principle of superposition. It is however not the case for
large motions. When the motion becomes large, bending
and torsion are coupled by geometrical nonlinearity (due
to curvature and inertia effects). Hence the exact and

explicitly-written equations of motion are not available.

(a) (b) (c) (d)

Fig. 1 (@ A uniform straight elastic rod (b)
Bending motion (c) Torsion motion (d) Coupled
bending~ torsional motion

According to Cusumano, it was assumed that a thin
rod can be bent only in the flexible direction. With a
proper simplification and neglect of nonlinear curvature
effect, the two coupled bending-torsional nonlinear partial
differential equations were derived. Fractal dimension

analysis made from his experimental data showed that the

chaotic dynamics of the elastica were low-dimensional.
Hence it was good enough to model the system with two
degrees of freedom. By Galerkin procedure and with a
simple mechanical analogue, the system can finally be

modeled as in Fig. 2.

%

Fig. 2 A simple mechanical
analogue to elastica

The kinetic energy T and the potential energies are as
what follows (T : time) :

T=2(gai+ad+4at,
, ., d
=%(qu%+k20§). ="
Through the non-dimensionalization by using the
concept of the characteristic length 8 defined as
&=/ (m&/]) (¢ ! a nondimensional parameter), the non-
dimensional T and V can be written as

T=%(1+5y2) x'2+—%- 5,

1

" 2)

V= %(i)le +5%)
where x=f{j/(mb'2)}q1=q1/£ is the torsional displacement,
y=q»/8 the bending displacement, and p = (ki/J)/(ks/m)

the ratio of linearized natural frequencies.

3. COMPUTATION OF NLM AS A BIFURCATION MQDE
3.1 Free Vibrations and a Bifurcation Mode

Write the equations of motion from Eq.(2) as

(1+ey)i+2eyys+pix = 0 3)
y—ex y+y = 0.
Since the lateral instability is closely related with the
stability change of the x-mode, consider its stability.
Write the x-mode as

x=Asinpt+n, y=0+¢& @
Then the variational equations for the x-mode are
7+0'1=0
5)

&+ (1—eA%pPcos phe=0.
The eigenvalues of Eq.(5 a) are Mz = = ip (i ¥ = -1)
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and the remaining two eigenvalues determine the stability
of the periodic motion(in this case, x-mode). We know
that the Hamiltonian systems have two characteristic
exponents which are identically zero due to the symplectic

om
structure

and hence it will be very reasonable to use
the Synge’s stability concept in the kinematico-statical
sense™. The resultant equation for the magnitude of the
becomes the standard Mathieu

disturbance  vector

- 6)
equation

B+ (8+2ecos20)B=0, r=pt. (6)
where 8=1/p"-£A%2, and e=-g¢A%4. The bifurcation mode
occurs when the arrowed line & = 1/p? + 2 e (x-mode)
crosses the transition curve 8 = - %2 + O(e%), as shown
below. This corresponds to h = T + V = 10.0, when the
parameters are p = 20.0 and € = 0.1(Fig. 3). It is stable
for small amplitude A and gets unstable when A*>

®

2/(ep”)(when p=1). The eigenfunction corresponding to

this transition curve is written as

B8 = C(1+ecos2pt/2) + O(&?) 7)
where &4 is in the y-direction and C is an arbitrary
constant. This eigenfunction will be the seed for the
bifurcation mode, called NLM, and will be implemented in

forced vibration of a bifurcation mode.

o8 T-modefstatle) 04 .
z-mode(pnstable)i
04 — / 02 /
. vl s | YV /1"
y 0 T y 0 YR B
. \\ . _/
-04 0z Y .
NLM{stabic)
08 04
2 ! 0 i 2 2 ' o ’ 2
¥ ¥

(a) ()

Fig. 3 Bifurcation of the x-mode into NLM (a)stable
x-mode(h = 9.0) (b) unstable x-mode and two stable
nonlocal mode(h = 11.0)

Let *(# be the solution of perturbed trajectory at the

stability change. Then it can be written as
=3+ F, ®)
where % (# is the unperturbed periodic solution and # (9

the eigenfunction of the bifurcation-yielding transition

curve.

With the further increase in total energy, the above
equation can be assumed to be the generating function to
describe the bifurcation mode. Decomposing this function

into each generalized coordinate function of the form
o= % (wd* B (0h), i=1,2. @

When it is substituted into the equations of motion,
the harmonic balance method(HBM) can be applicable.
NLM can be expressed as infinite series of harmonics
(D= 3 Ay,-isin(@n—1)ot,
o (10)
W) =By+ ZIBZ,.COSant
Use the first approximation of NLM, then it will the
same form as above :

x(8) = Asinwt, ()= By+ Bcos2wt an
Note that by Eq. (8), we have

(D= Asinwt, x()=0, ~

Bi(H=0, Bi(H=B,+Beoszwt. 2

Substituting into Eq. (3) and balancing harmonics, we

have the following three equations.

A{pz—wz—ewz(B§+BoB+%Bz)} = 0(A=0),
Bo—ngAz(Bﬁiz’i) =0, (13)
(1—4w2)B—§w2A2(BO+B) = 0.

Backbone curves from Eq. (13) are shown in Fig. 4.
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Fig. 4 (a) Backbone curves of NLM (b), (c), (d)
The region near p is magnified

3.2 Applications to Forced Vibrations : Natural Forcing
Eunction

By utilizing the procedure of computing bifurcation

modes, forced responses can be calculated for weakly
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damped forced systems. Let «, i = 1, 2, .., N, be
mutually independent systems parameters including h.
Assume that the homoclinic loops, which occur with the
stability change of periodic motion, are persisted under
small variations in @'s. Then define the natural forcing

function”! AW in the form

fB=Zc 28 nq, (14)

where Ad; is a small variation in o, and @ arbitrary
constant. When X is added to the equations of motion,
a varied bifurcation mode will be obtained, which can be
regarded as a forced response. Since the eigenfunction
g'(#) is expressed in a series of infinite harmonics, the
natural forcing function is not p}actical. However, the first
few terms are dominant, and we can choose the natural
forcing function as practical as possible in the
N-dimensional vector space defined by the above
equation, implying a wide variety of choice.

For weakly damped systems, terms having high
harmonics may be dissipated so that a periodic response
is expected under simple harmonic excitations. When a
practical natural force is applied to damped systems, it is
possible to obtain stable periodic solutions other than
those associated with bifurcation modes. In this case, each

solution has its own domain of attraction.

3.2.1 Undamped Forced Vibrations

According to the concept of natural forcing function,
for the NLM response as a bifurcation mode, the
following function should be applied to the system.

Remind that the eigenfunction of the transition curve

which generates the NLM is (Also note that is in the

y-direction.)
BH=CU+£ cos2pt) + O(e). ®)
Since e = *EAZ/4, the eigenfunction becomes(when p is

replaced with Q)

- 2
)= c(1— Eg‘ cos20D+0(eD).  (15)

The derived forcing function becomes

2
O AD = C1C(—AT)c0529tE Fycos2@t (16)

Since A is in the y-direction, also so is the forcing
function. Hence the equations of motion in undamped
forced vibration becomes

(1+ey’)x + 2eyyx + p'x = 0,
a7

y — ex’y + y = Fycos2@t.
In order to apply the HBM, assume that solutions are

x(D = Asinft, y(H= By+ Bcos22t. (18)
The balancing result can be written as :

A{pz—gz—aQZ(Bg+BoB+le)} =0,

2
BO-§QZA2(BU+—§—) =0, U9
(1—492)B—§QZA2(BU+B> = F,.

There are two case with respect to the value of A.
(i) A = 0 : Single mode response

In this case, Bo = 0 from the second of Eq. (18).
Hence the frequency response equation becomes

B=F,/(1-42% (20)

The corresponding solutions are

x(H=0, Y(t)':{i?COSZQt. D

(i) A*0 : Coupled mode response

The responses are of the form Eq. (18) where A, By,
and B by Eq. (19).

The stability of the single mode response(case(i)) can
be determined similarly as in the f{ree vibration of the
y-mode, if it is allowed to replace p with p/(4Q). When 2
n/(p/4Q) is near 4n/N, or when Q is near p/(2N), N = 1, 3,
5 e , the single mode response becomes unstable(Fig. 5
! pis replaced by p/42 and E by eFi/(2 (1-42)%) ).

’

E

F
T T f P

0 1 2 3

Fig. 5 Stability chart of y-mode

3.2.2 Damped Forced Vibrations

The linear fluid dampings 2s¢x and 2&y are added to

the equations of motion in undamped forced vibrations.
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Actually, it can be regarded as the structural damping of
the beam.

The equations of motion then become

(1+ey)x + Zeyyx + 2% + px=0,

vy — ex’y + 20y + y= Fycos20t (22)
Assume that solutions are
x(H) = Asin(Qt—¢,), 93)

¥(H = By+ Bcos (20t— ).
Substitution into the equations of motion yields the

five equations which are obtained by balancing the
harmonics and the analysis is quite similar as in

undamped forced vibrations.

4. RQUTES-TQO-CHAQS
4. 1 _lIdentification Of Chaos

Since there are no generally accepted definition of
chaos, it is appropriate to use the following working
definition for practical purpose“z’.

If the following ingredients are present ;

1. The underlying dynamics is deterministic ;

2. No external noise has been introduced ;

3. The seemingly erratic béhaviour of individual
trajectories depends sensitively on small changes of initial
conditions ;

4. In contrast to a single trajectory, some global
characteristics, obtained by averaging over many
trajectories or over long time, e.g., a positive Lyapunov
exponent, does not depend on initial conditions ;

5. And, when a parameter is tuned, the erratic state is
reached via a sequence of events, usually including the
appearance of one or more subharmonics ;

then one may well be dealing with chaos.

4.2 Chaotic Vibrations of Thin Beams_: Route-to—Chaos

The selected parameters for the route-to-chaos are

e=0.1,p=20, §;={;=0.01, 2=4.25.

Before we go ahead, the choice of @ is considered.
Previously we knew that stability of the single mode
response can be deduced from that of y-mode.

Since we choose p = 20 and Q = 4.25, we get

P22 = 20/2x4.25 = 2.35,
or p/(22) is neither close to any odd integer N.

Therefore the stability changes of the single mode cannot
make any effect on the bifurcation behaviors for the
present choice of parameters.

The numerical integration technique used here is the
simple fourth order Runge-Kutta method with step size of
1/10,000~1/20,000 where 1T is a forcing period(when 22 =
85, T = 0.739. Thus the used step size is of order 10 *~
10°%). The calculations are made up to 5x10%when
Fo<1000), 1x10'(when 1000<Fy<5000), and 1.5x10*(when
5000<Fo<20000) for the steady state response. The initial
conditions are fixed at the values where the nonlocal
mode response can occur for Fo=70, and the choice is
made by considering the energy balance of the system.
Poincaré sections are selected as what follow. If the
equations of motion may be written as an autonomous
system x’ = f(x) where x = {x, x’, v, y’, 8)7, time t is
replaced by 9 as a new coordinate, and x€R*x Si(S'=R/1

is the circle of length 1=21/2Q), then a cross section

2= {{x,%,9y,06=0}
can be picked. Define the Poincaré map

P: X3
4.2.1 General Descriptions

@Woow e W W ) » @

B

T T T T T T T T
0.0 7.1 44.0 (26.0 139.0 142.0 300.0 1000.0 2000.0

Fig, 6 Schematic representation of the ranges of
the forcing ampiitude Fo

® Range (b)
Nonlocal mode response occurs for the first time at Fo
= 7.1 where y(t) is of period 1 and x(t) of period 2, as
expected. The nonlocal mode response becomes quasi-
periodic at about Fy = 20.0. As a specific characteristic
of Hopf bifurcation, a fixed point forms a limit cycle.
On the Poincaré maps, the fixed point appears as one
point, and the limit cycle as a set of points with a
circle-like formation. With more increment of forcing
amplitude up to Fo = 44.0, the quasi-periodic behavior
grows larger, or the loops on the Poincaré maps
become large.

@ Range (d)

The nonlocal mode response abruptly occurs at Fy =
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126 and the motions are periodic(torsion : period 83,

bending : 44) or quasi-periodic(a limit cycle). This
motion grow quasi-periodic with the increment of
forcing amplitude. The quasi-periodic motion is formed
with the fixed point at Fy = 126 as a base.

@ Range (f)
There dominantly exists the nonlocal mode response
where x(t) is of period 8, and y(t) of period 4. Though
it is suspected that there might exist the nonlocal
mode response where x(t) is of period 4 and y(t) of
period 2, it cannot be found.

@® Range (g)
There happens a period—dpubling bifurcation. The
nonlocal mode response has x(t) of period 16 and y(t)
of period 8.

@ Range (h)~
With the further period-doubling process, chaotic
vibrations occur.

422 Resulis of Numerical Simulations

In this simulations, several forcing amplitudes are

selected according to the region showing different
(a)Fo = 8(region a), (b)Fo = 44
(region b), (cJFs = 142(region f), (d)Fo = 100000.

In Fig. 7, there are shown Poincaré maps in the x-x’

dynamic behaviors

and y-y' planes, time responses of x(t) and y(t),
Lyapunov exponents, and FFT’s of x(t) and y(t) from the
top.

The first two rows well describe the route-to-chaos
on the Poincaré maps period doubling bifurcations
containing Hopf bifurcations. Periodic motions(a) where
x(t) is of 21, y(t) is of T become limit cycles(b) of which
a point form a set of points arranged in a circle. With
the increment of forcing amplitude period-doubled motions
are found : in {(c), period-87 x(t) and period-4t y(t) are
properly shown. Finally in (d), chaotic vibration is
attained through further period-doublings, especially on
the y-y’ Poincaré map, dynamic two-well behavior is
found which is similar to that in a buckled-beam®.

The process can also be verified by FFTS of the

responses(”' ¥ 1n the FFT's of y(t), the rigid portion is
ignored which is shown as a one-sided response(the sixth
and seventh ones). Here f corresponds to forcing
frequency which is f = 20/2n = 4.25/n = 1.353. There are
only on peak at 0.676(=1.353/2) for x(t) and at 1.353 for
y(t) which implies period 2% and T motions in (a). In (b),
there are shown sidebands on both sides of peak values
where the spacing corresponds to the natural frequency of
bending mode(fl)(note that the natural frequency of
bending mode is 1/21=0.159 and this is the first peak in
FFT of y{t)). (¢} corresponds to the period 8t and 4t
motion of x{(t} and y(t), respectively. The peaks are
shown in a sequence of /8, 3i/8, 5{/8, ..., in FFT of x(1).
In FFT of y(t), the peaks are shown in a series of {/4,
2£/4, 3f/4, f, ..., which implies period 41 motion. At choas,
broad spectrum of FFT'’s are obtained which means that
all frequencies are excited.

Those all processes are also presented in time
responses(the third and fourth rows). As a verification of
the occurrence of chaos, the well-known Lyapunov
exponents are calculated for Fo=100 and for Fo=10". The
calculation method employs the repeated wuse of
GSR{Gram-Schmidt Renormalization) procedure to prevent
the divergence of the spectrum“r”. When Fo=10.0, which
corresponds to the period 2T and T motion of x(t) and
y(t), respectively, the calculated Lyapunov exponent A\'s
are (0, 0, ~1.25%10 % -1.45%10 *) bits/sec. A = 0 means that
principal axes are on the average preserves in their
magnitudes and negative exponents imply that the
corresponding  principal axis are on the average
contraction. Globally, since ZA <0, the volume in the
phase space is continuously contraction, and it is the case
because the system is dissipative. Physically there remain
only periodic motions corresponding to M = O(four
dimensional phase space finally becomes two torus
composed only of x(t) and y(t). When Fo=10" where the
system is chaotic, the calculated Lyapunov exponents are
(675x10 %, 2.46x10 %, -267x10% - 6.78x10%) bits/sec. At

least one positive Lyapunov exponent implies chaos.
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Hence when F()=104, chaos occurs in the system. The

magnitude of Lyapunov exponent is much related to the

quantification of an attractor’s dynamics on information

loss, or Lyapunov exponents measure the rate at which

system processes create or destroy information.

3.

NCLUSIONS

The results are summarized as what follows.

1) The modeling of thin beams, which is a continuous
system, into a two DOF system vyields satisfactory

results for the chaotic vibrations.

2

The concept of “natural forcing function” derived
from the eigenfunction of the bifurcation mode is
very useful for the nétural responses of the
system.

3

=

Among the perturbation techniques, HBM is a good
estimate for the response when the geometry of
motion is known,

4

=

It is known that there exist periodic solutions of
coupled mode response for somewhat large damping
and forcing amplitude, as well as weak damping

and forcing.

g

The route~to-chaos related with lateral instability in
thin beams is composed of period-doubling and

quasiperiodic process and finally follows

discontinuous period-doubling process.
6) The chaotic vibrations are verified by using
Poincaré maps, FFT’s, time responses, trajectories
in the configration space, and the very powerful

technique Lyapunov characteristic exponents.
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