• Title/Summary/Keyword: patterned sapphire substrate

Search Result 36, Processing Time 0.027 seconds

GaN Base Blue LED on Patterned Sapphire Substrate by Wet Etching (습식식각 방법으로 제작한 패턴 형성 사파이어 기판을 가지는 GaN계 청색 LED)

  • Kim, Do-Hyung;Yi, Yong-Gon;Yu, Soon-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.7-11
    • /
    • 2011
  • Sapphire substrate was patterned by a selective chemical wet etching technique, and GaN/InGaN structures were grown on this substrate by MOVPE (Metal Organic Vapor Phase Epitaxy). The surface of grown GaN on patterned sapphire substrate (PSS) has good morphology and uniformity. The patterned sapphire substrate LED showed better light output than conventional LED that improvement 50%. We think these results come from enhancement of internal quantum efficiency by decrease of threading dislocation and increase of light extraction efficiency. Also these LED showed more uniform emission distribution in angle than conventional LED.

The evaluation of the extraction efficiency of PSS(patterned sapphire substrate) LED using simulation (시뮬레이션을 이용한 PSS (patterned sapphire substrate) LED의 광추출 효율 평가)

  • Lee, Jin-Bock;Yoon, Sang-Ho;Kim, Dong-Woohn;Choi, Chang-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.91-96
    • /
    • 2007
  • The light extraction efficiency in GaN-on-sapphire LEDs based on a simple model was analyzed qualitatively. The light extraction efficiency in the LEDs is simulated numerically by using ray tracing method. In the present study, the extraction efficiency was simulated on flat LED and PSS(patterned sapphire substrate) LED. The role of the patterned sapphire substrate in PSS LED are analyzed and discussed. And, the effects of reflectance on flat LED and PSS LED were investigated. This analysis of simulation results provide a numeric figure for the extraction efficiency of LEDs and are helpful in the design of high brightness GaN LEDs.

Luminescence Properties of Blue Light-emitting Diode Grown on Patterned Sapphire Substrate

  • Wang, Dang-Hui;Xu, Tian-Han;Wang, Lei
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.358-363
    • /
    • 2017
  • In this study, we present a detailed investigation of luminescence properties of a blue light-emitting diode using InGaN/GaN (indium component is 17.43%) multiple quantum wells as the active region grown on patterned sapphire substrate by low-pressure metal-organic chemical vapor deposition (MOCVD). High-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman scattering (RS) and photoluminescence (PL) measurements are employed to study the crystal quality, the threading dislocation density, surface morphology, residual strain existing in the active region and optical properties. We conclude that the crystalline quality and surface morphology can be greatly improved, the red-shift of peak wavelength is eliminated and the superior blue light LED can be obtained because the residual strain that existed in the active region can be relaxed when the LED is grown on patterned sapphire substrate (PSS). We discuss the mechanisms of growing on PSS to enhance the superior luminescence properties of blue light LED from the viewpoint of residual strain in the active region.

Investigation of Structural and Optical Properties of III-Nitride LED grown on Patterned Substrate by MOCVD (Patterned substrate을 이용하여 MOCVD법으로 성장된 고효율 질화물 반도체의 광특성 및 구조 분석)

  • Kim, Sun-Woon;Kim, Je-Won
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.626-631
    • /
    • 2005
  • GaN-related compound semiconductors were grown on the corrugated interface substrate using a metalorganic chemical vapor deposition system to increase the optical power of white LEDs. The patterning of substrate for enhancing the extraction efficiency was processed using an inductively coupled plasma reactive ion etching system and the surface morphology of the etched sapphire wafer and that of the non-etched surface were investigated using an atomic force microscope. The structural and optical properties of GaN grown on the corrugated interface substrate were characterized by a high-resolution x-ray diffraction, transmission electron microscopy, atomic force microscope and photoluminescence. The roughness of the etched sapphire wafer was higher than that of the non-etched one. The surface of III-nitride films grown on the hemispherically patterned wafer showed the nano-sized pin-holes that were not grown partially. In this case, the leakage current of the LED chip at the reverse bias was abruptly increased. The reason is that the hemispherically patterned region doesn't have (0001) plane that is favor for GaN growth. The lateral growth of the GaN layer grown on (0001) plane located in between the patterns was enhanced by raising the growth temperature ana lowering the reactor pressure resulting in the smooth surface over the patterned region. The crystal quality of GaN on the patterned substrate was also similar with that of GaN on the conventional substrate and no defect was detected in the interface. The optical power of the LED on the patterned substrate was $14\%$ higher than that on the conventional substrate due to the increased extraction efficiency.

Growth and Characteristics of Near-UV LED Structures on Wet-etched Patterned Sapphire Substrate

  • Cheong, Hung-Seob;Hong, Chang-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.199-205
    • /
    • 2006
  • Patterned sapphire substrates (PSS) were fabricated by a simple wet etching process with $SiO_2$ stripe masks and a mixed solution of $H_2SO_4$ and $H_3PO_4$. GaN layers were epitaxially grown on the PSS under the optimized 2-step growth condition of metalorganic vapor deposition. During the 1st growth step, GaN layers with triangular cross sections were grown on the selected area of the surface of the PSS, and in the 2nd growth step, the GaN layers were laterally grown and coalesced with neighboring GaN layers. The density of threading dislocations on the surface of the coalesced GaN layer was $2{\sim}4\;{\times}\;10^7\;cm^{-2}$ over the entire region. The epitaxial structure of near-UV light emitting diode (LED) was grown over the GaN layers on the PSS. The internal quantum efficiency and the extraction efficiency of the LED structure grown on the PSS were remarkably increased when compared to the conventional LED structure grown on the flat sapphire substrate. The reduction in TD density and the decrease in the number of times of total internal reflections of the light flux are mainly attributed due to high level of scattering on the PSS.

Design of Structure for High-Efficiency LEDs on Patterned Sapphire Substrate (LED용 사파이어 기판의 고효율 패턴 설계)

  • Kang, Ho-Ju;Song, Hui-Young;Jeong, Myung-Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.91-95
    • /
    • 2011
  • The light extraction efficiency in GaN based LED was analyzed qualitatively. The extraction efficiency was simulated with patterned shape, depth, size and spacing by using ray-tracing simulation. In simulation result, patterned shape and depth for the optimized extraction efficiency in PSS LED were in indented Hemi-sphere solid. Through the optimal patterning of the various factors, about 40% enhancement in extraction efficiency was obtained.

A Study on Improvement of the Light Emitting Efficiency on Flip Chip LED with Patterned Sapphire Substrate by the Optical Simulation (광학 시뮬레이션을 이용한 Patterned Sapphire Substrate에 따른 Flip Chip LED의 광 추출 효율 변화에 대한 연구)

  • Park, Hyun Jung;Lee, Dong Kyu;Kwak, Joon Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.676-681
    • /
    • 2015
  • Recently many studies being carried out to increase the light efficiency of LED. The external quantum efficiency of LED, generally the light efficiency, is determined by the internal quantum efficiency and the light extraction efficiency. The internal quantum efficiency of LED was already reached to more than 90%, but the light extraction efficiency is still insufficient compared with the internal quantum efficiency because the total internal reflection is generated in the interface between the LED chip and air. Thus, we studied about flip chip LED with PSS and performed the optical simulation which find more optimized PSS for flip chip LED to increase the light extraction efficiency. Decreasing of the total internal reflection and effect of diffused reflection according to PSS improved the light extraction efficiency. To get more higher the efficiency, we simulated flip chip with PSS that the parameters are arrangement, edge spacing, radius, height and shape of PSS.

Numerical Simulations of the Light-Extraction Efficiency of LEDs on Sapphire Substrates Patterned with Various Polygonal Pyramids

  • Cui, Hao;Park, Si-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.772-776
    • /
    • 2014
  • We report a numerical analysis of the light-extraction efficiency (LEE) of light-emitting diodes (LEDs) on patterned sapphire substrates (PSSs). We considered various n-sided, regular convex pyramids, where n is an integer and $n{\geq}3$. We then considered four cross sections: extruded, subtracted, truncated-extruded, and truncated-subtracted. Ray-tracing simulations were carried out with these polygonal pyramid patterns, and the dimensions of the patterns were systematically varied. Optimized pattern shapes were determined for large LEE. An extruded circular pyramid with a slant angle of $45^{\circ}$ was found to be the optimal patterned shape.

Characterization of alpha-Ga2O3 epilayers grown on cone-shape patterned sapphire substrate by halide vapor phase epitaxy (원뿔 형태의 patterned sapphire substrate 위에 성장한 α-Ga2O3의 특성분석)

  • Son, Hoki;Choi, Ye-Ji;Lee, Young-Jin;Kim, Jin-Ho;Kim, Sun Woog;Ra, Yong-Ho;Lim, Tae-Young;Hwang, Jonghee;Jeon, Dae-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.173-178
    • /
    • 2019
  • In this study, we demonstrated a characterization of ${\alpha}-Ga_2O_3$ grown on a cone-shape patterned sapphire substrate by using the halide vapor phase epitaxy. An ${\alpha}-Ga_2O_3$ was grown on different size of PSS and c-plane sapphire substrate for comparison to confirm the effect of PSS. In addition, growth time of ${\alpha}-Ga_2O_3$ was gradually increased to confirm growth mechanism of ${\alpha}-Ga_2O_3$ grown on the PSS. A growth temperature was changed to $470-550^{\circ}C$. It can be analyzed growth conditions and mechanisms on the cone-shape PSS, resulting in a significant decrease in the FWHM value of an asymmetric plane (10-14) of ${\alpha}-Ga_2O_3$, due to lateral growth that occurs during the growth process.

Effects of AlN buffer layer on optical properties of epitaxial layer structure deposited on patterned sapphire substrate (패턴화된 사파이어 기판 위에 증착된 AlN 버퍼층 박막의 에피층 구조의 광학적 특성에 대한 영향)

  • Park, Kyoung-Wook;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • In this research, 50 nm thick AlN thin films were deposited on the patterned sapphire (0001) substrate by using HVPE (Hydride Vapor Phase Epitaxy) system and then epitaxial layer structure was grown by MOCVD (metal organic chemical vapor deposition). The surface morphology of the AlN buffer layer film was observed by SEM (scanning electron microscopy) and AFM (atomic force microscope), and then the crystal structure of GaN films of the epitaxial layer structure was investigated by HR-XRC (high resolution X-ray rocking curve). The XRD peak intensity of GaN thin film of epitaxial layer structure deposited on AlN buffer layer film and sapphire substrate was rather higher in case of that on PSS than normal sapphire substrate. In AFM surface image, the epitaxial layer structure formed on AlN buffer layer showed rather low pit density and less defect density. In the optical output power, the epitaxial layer structure formed on AlN buffer layer showed very high intensity compared to that of the epitaxial layer structure without AlN thin film.