Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.1.7

GaN Base Blue LED on Patterned Sapphire Substrate by Wet Etching  

Kim, Do-Hyung (Division of Electronic Engineering, Sunmoon University)
Yi, Yong-Gon (Division of Electronic Engineering, Sunmoon University)
Yu, Soon-Jae (Division of Electronic Engineering, Sunmoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.1, 2011 , pp. 7-11 More about this Journal
Abstract
Sapphire substrate was patterned by a selective chemical wet etching technique, and GaN/InGaN structures were grown on this substrate by MOVPE (Metal Organic Vapor Phase Epitaxy). The surface of grown GaN on patterned sapphire substrate (PSS) has good morphology and uniformity. The patterned sapphire substrate LED showed better light output than conventional LED that improvement 50%. We think these results come from enhancement of internal quantum efficiency by decrease of threading dislocation and increase of light extraction efficiency. Also these LED showed more uniform emission distribution in angle than conventional LED.
Keywords
Wet etching; Patterned sapphire substrate; Extraction efficiency; GaN surface; LED;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. V. Cuong, H. S. Cheong, H. G. Kim. H. Y. Kim. C. H. Hong, E. K. Suh, H. K. Cho, H. K. and B. H. Kong, Appl. Phys. Lett. 90, 131107 (2007).   DOI
2 D-H. Kang, E-S. Jang, H. Song, D-W. Kim, J-S. Kim, I-H. Lee, S. Kannappan, and C-R. Lee , J. Korean Phys. Soc. 52, 1895 (2008).   DOI
3 F. Dwikusuman, D. Saulys, and T. F. Kuech, J. Electrochem. Soc. 149 (11), G603 (2002).   DOI
4 K. Hiramatsu, J. Phys. Condens. Matter. 13, 6961 (2001).   DOI
5 B. Beaumont, P. Vennegues & P. Gibart, Phys. Stat. Sol. (b) 227, 1 (2001).   DOI
6 K. Tadatomo, H. Okinawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato and T. Taguchi, Jpn. J. Appl. Phys. 40, L583 (2001).   DOI
7 M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, M. Kato, T. Taguchi, Jpn. J. Appl. Phys. 41, L1431 (2002).   DOI
8 Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. T. Lee, T. C. Wen, L. W. Wu, C. H. Kuo, C. S. Chang and S. C. Shei, J. Cryst. Growth 261, 466 (2004).   DOI
9 Y. J. Lee, T. C. Hsu, H. C. Kuo, S. C. Wang, Y. L. Yang, and S. N. Yen, Mater. Sci. and Eng.B 122, 184 (2005).   DOI
10 Z. H. Feng, Y. D. Qi, Z. D. Lu and Kei May Lau, J. Cryst. Growth 272, 327 (2004).   DOI
11 S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, and C. H. Liu, Solid-State Electron 47, 359 (2003).
12 Ji-Myon Lee, Ki-Myung Chang, Sang-Woo Kim, Chul-Huh, In-Hwan Lee, and Seong-Ju Park, Appl. Phys. Lett. 87, 7667 (2000).
13 X. A. Cao, S. J. Pearton, A. P. Zhang, G. T. Dang, F. Ren, R. J. Shu, L. Zhang, R. Hickman, and J. M. Van Hove, Appl. Phys. Lett. 75, 2569 (1999).   DOI
14 M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. -H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. -W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. -S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser and D. Collins, Appl. Phys. Lett. 75, 2365 (1999).   DOI
15 H. S. Kim, J. S. Hwang, P. J. Chung, J. Korean Chem. Soc. 39, 1 (1995).