• Title/Summary/Keyword: pattern mask

Search Result 270, Processing Time 0.032 seconds

Analysis of Process Parameters to Improve On-Chip Linewidth Variation

  • Jang, Yun-Kyeong;Lee, Doo-Youl;Lee, Sung-Woo;Lee, Eun-Mi;Choi, Soo-Han;Kang, Yool;Yeo, Gi-Sung;Woo, Sang-Gyun;Cho, Han-Ku;Park, Jong-Rak
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.2
    • /
    • pp.100-105
    • /
    • 2004
  • The influencing factors on the OPC (optical proximity correction) results are quantitatively analyzed using OPCed L/S patterns. ${\sigma}$ values of proximity variations are measured to be 9.3 nm and 15.2 nm for PR-A and PR-B, respectively. The effect of post exposure bake condition is assessed. 16.2 nm and 13.8 nm of variations are observed. Proximity variations of 11.6 nm and 15.2 nm are measured by changing the illumination condition. In order not to seriously deteriorate the OPC, these factors should be fixed after the OPC rules are extracted. Proximity variations of 11.4, 13.9, and 15.2 nm are observed for the mask mean-to-targets of 0, 2 and 4 nm, respectively. The decrease the OPC grid size from 1 nm to 0.5 nm enhances the correction resolution and the OCV is reduced from 14.6 nm to 11.4 nm. The enhancement amount of proximity variations are 9.2 nm corresponding to 39% improvement. The critical dimension (CD) uniformity improvement for adopting the small grid size is confirmed by measuring the CD uniformity on real SRAM pattern. CD uniformities are measured 9.9 nm and 8.7 nm for grid size of 1 nm and 0.5 nm, respectively. 22% improvement of the CD uniformity is achieved. The decrease of OPC grid size is shown to improve not only the proximity correction, but also the uniformity.

Atmospheric Pressure Plasma Etching Technology for Forming Circular Holes in Perovskite Semiconductor Materials (페로브스카이트 반도체 물질에 원형 패턴을 형성하기 위한 상압플라즈마 식각 기술)

  • Kim, Moojin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.10-15
    • /
    • 2021
  • In this paper, we formed perovskite (CH3NH3PbI3) thin films on glass with wet coating methods, and used various analytical techniques to discuss film thickness, surface roughness, crystallinity, composition, and optical property. The coated semiconductor material has no defects and is uniform, the surface roughness value is very small, and a high absorption rate has been observed in the visible light area. Next, in order to implement the hole shape in the organic-inorganic layer, Samples in the order of a metal mask with holes at regular intervals, a glass coated with a perovskite material, and a magnet were etched with atmospheric pressure plasma equipment. The shape of the hole formed in the perovskite material was analyzed by changing the time. It can be seen that more etching is performed as the time increases. The sample with the longest processing time was examined in more detail, and it was classified into 7 regions by the difference according to the location of the plasma.

Developing a clothing and textiles studio course for future home economics teachers using principles of PBL and maker education (PBL과 메이커 교육을 적용한 가정과 예비교사를 위한 의류학 실습 수업 개발)

  • Lee, Yhe-Young
    • The Research Journal of the Costume Culture
    • /
    • v.29 no.1
    • /
    • pp.134-151
    • /
    • 2021
  • The aim of this research is to develop a clothing and textiles studio course for preservice home economics teachers applying principles of Project-Based Learning (PBL) and maker education to equip future teachers with the ability to nurture creativity among adolescents. The studio course was developed in the following stages: analysis, design, development, implementation, and evaluation. We concluded that the resulting course met the following objectives extracted from the 2015 revised curriculum of home economics subjects: to promote creative and environmentally-friendly fashion design and styling abilities, gain the ability to use makerspace tools, understand flat pattern making and sewing processes, and develop creative thinking, aesthetic sense, and communication skills. Furthermore, the educational effects of PBL and maker education were confirmed through student comments on the course. Students mentioned the practicality of the material in their actual lives along with their enhanced integration of the subject material, self-directedness, aesthetic sense, ability to learn through trial and error, collaboration and communication, and sharing. Based on results from the implementation and evaluation stages, a clothing and textiles studio course should include the following modules: introduction of terms and tools, submission and sharing of clothing reformation and upcycling techniques, introduction to hand sewing, pouch making, heat-transfer printing, 3D printing, mask making, hat making, vest making, and the final team project on fashion styling. It is important for instructors to provide detailed guidelines on selecting personas for styling, looking for available materials, and selecting materials online.

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF

Eyelid Detection Algorithm Based on Parabolic Hough Transform for Iris Recognition (홍채 인식을 위한 포물 허프 변환 기반 눈꺼풀 영역 검출 알고리즘)

  • Jang, Young-Kyoon;Kang, Byung-Jun;Park, Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.94-104
    • /
    • 2007
  • Iris recognition is biometric technology which uses a unique iris pattern of user in order to identify person. In the captured iris image by conventional iris recognition camera, it is often the case with eyelid occlusion, which covers iris information. The eyelids are unnecessary information that causes bad recognition performance, so this paper proposes robust algorithm in order to detect eyelid. This research has following three advantages compared to previous works. First, we remove the detected eyelash and specular reflection by linear interpolation method because they act as noise factors when locating eyelid. Second, we detect the candidate points of eyelid by using mask in limited eyelid searching area, which is determined by searching the cross position of eyelid and the outer boundary of iris. And our proposed algorithm detects eyelid by using parabolic hough transform based on the detected candidate points. Third, there have been many researches to detect eyelid, but they did not consider the rotation of eyelid in an iris image. Whereas, we consider the rotation factor in parabolic hough transform to overcome such problem. We tested our algorithm with CASIA Database. As the experimental results, the detection accuracy were 90.82% and 96.47% in case of detecting upper and lower eyelid, respectively.

Fabrication of Microwire Arrays for Enhanced Light Trapping Efficiency Using Deep Reactive Ion Etching

  • Hwang, In-Chan;Seo, Gwan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.454-454
    • /
    • 2014
  • Silicon microwire array is one of the promising platforms as a means for developing highly efficient solar cells thanks to the enhanced light trapping efficiency. Among the various fabrication methods of microstructures, deep reactive ion etching (DRIE) process has been extensively used in fabrication of high aspect ratio microwire arrays. In this presentation, we show precisely controlled Si microwire arrays by tuning the DRIE process conditions. A periodic microdisk arrays were patterned on 4-inch Si wafer (p-type, $1{\sim}10{\Omega}cm$) using photolithography. After developing the pattern, 150-nm-thick Al was deposited and lifted-off to leave Al microdisk arrays on the starting Si wafer. Periodic Al microdisk arrays (diameter of $2{\mu}m$ and periodic distance of $2{\mu}m$) were used as an etch mask. A DRIE process (Tegal 200) is used for anisotropic deep silicon etching at room temperature. During the process, $SF_6$ and $C_4F_8$ gases were used for the etching and surface passivation, respectively. The length and shape of microwire arrays were controlled by etching time and $SF_6/C_4F_8$ ratio. By adjusting $SF_6/C_4F_8$ gas ratio, the shape of Si microwire can be controlled, resulting in the formation of tapered or vertical microwires. After DRIE process, the residual polymer and etching damage on the surface of the microwires were removed using piranha solution ($H_2SO_4:H_2O_2=4:1$) followed by thermal oxidation ($900^{\circ}C$, 40 min). The oxide layer formed through the thermal oxidation was etched by diluted hydrofluoric acid (1 wt% HF). The surface morphology of a Si microwire arrays was characterized by field-emission scanning electron microscopy (FE-SEM, Hitachi S-4800). Optical reflection measurements were performed over 300~1100 nm wavelengths using a UV-Vis/NIR spectrophotometer (Cary 5000, Agilent) in which a 60 mm integrating sphere (Labsphere) is equipped to account for total light (diffuse and specular) reflected from the samples. The total reflection by the microwire arrays sample was reduced from 20 % to 10 % of the incident light over the visible region when the length of the microwire was increased from $10{\mu}m$ to $30{\mu}m$.

  • PDF

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF

A Study on the Wearing Condition and Satisfaction of Pesticide Protective Clothing (농약방제복 착용실태 및 만족도에 관한 연구)

  • Oh, Young-Soon;Lee, Kyung-Suk;Chae, Hye-Seon;Kim, Kyung-Ran;Kim, Sung-Woo
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.16 no.4
    • /
    • pp.217-228
    • /
    • 2014
  • The purpose of this study is to grasp inconveniences and improvements by examining wearing condition and satisfaction of protective clothing targeting 114 Korean farmers and to suggest basic data for enhancement of pattern and wearing satisfaction of protective clothing by understanding problems of pesticide-proof clothing through comparative analysis on the size of its commercial products. Most of male subjects were in charge of spraying pesticide, whereas female were most likely to play an assistant role to hold the hose of pesticide applicator. Both of female and male subjects were very aware of the harmful effect of pesticide on human body and tried to take off the clothes immediately after spraying it to reduce possible damage caused by pesticide. As a result of examining wearing condition, the farmers avoided wearing protective clothing because that it feels hot, stuffy, and uncomfortable to move. This hesitant response of wearing the clothing was not shown significantly in case of female subjects who play an assistant role for spraying. Although the farmers wore protective equipments such as mask or gloves in a proper way as compared to protective clothing, they seemed to choose alternative way rather than best way to block pesticide completely. The satisfaction regarding to the fitting of protective clothing which the subjects showed low in all items of upper-lower clothes except waistline. It is necessary to improve the functionality such as relief from heat stress and convenience for movement rather than design or economic in protective clothing development. As a result of comparing the size of five kinds of commercial protective clothing, the farmers got confused to choose the product since designation method of size across companies showed a significant difference in an identical clothing size. In addition, the sizing system developed on a basis of a well-built man has become a hindering factor in wearing satisfaction of female farmers.

  • PDF

Analysis of the Effect of the Etching Process and Ion Injection Process in the Unit Process for the Development of High Voltage Power Semiconductor Devices (고전압 전력반도체 소자 개발을 위한 단위공정에서 식각공정과 이온주입공정의 영향 분석)

  • Gyu Cheol Choi;KyungBeom Kim;Bonghwan Kim;Jong Min Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.255-261
    • /
    • 2023
  • Power semiconductors are semiconductors used for power conversion, transformation, distribution, and control. Recently, the global demand for high-voltage power semiconductors is increasing across various industrial fields, and optimization research on high-voltage IGBT components is urgently needed in these industries. For high-voltage IGBT development, setting the resistance value of the wafer and optimizing key unit processes are major variables in the electrical characteristics of the finished chip. Furthermore, the securing process and optimization of the technology to support high breakdown voltage is also important. Etching is a process of transferring the pattern of the mask circuit in the photolithography process to the wafer and removing unnecessary parts at the bottom of the photoresist film. Ion implantation is a process of injecting impurities along with thermal diffusion technology into the wafer substrate during the semiconductor manufacturing process. This process helps achieve a certain conductivity. In this study, dry etching and wet etching were controlled during field ring etching, which is an important process for forming a ring structure that supports the 3.3 kV breakdown voltage of IGBT, in order to analyze four conditions and form a stable body junction depth to secure the breakdown voltage. The field ring ion implantation process was optimized based on the TEG design by dividing it into four conditions. The wet etching 1-step method was advantageous in terms of process and work efficiency, and the ring pattern ion implantation conditions showed a doping concentration of 9.0E13 and an energy of 120 keV. The p-ion implantation conditions were optimized at a doping concentration of 6.5E13 and an energy of 80 keV, and the p+ ion implantation conditions were optimized at a doping concentration of 3.0E15 and an energy of 160 keV.

Dry Etching of Flexible Polycarbonate and PMMA in O2/SF6/CH4 Discharges (O2/SF6/CH4 플라즈마를 이용한 플렉시블 Polycarbonate와 PMMA의 건식 식각)

  • Joo, Y.W.;Park, Y.H.;Noh, H.S.;Kim, J.K.;Lee, J.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.2
    • /
    • pp.85-91
    • /
    • 2009
  • There has been a rapid progress for flexible polymer-based MEMS(Microelectromechanical Systems) technology. Polycarbonate (PC) and Poly Methyl Methacrylate (PMMA), so-called acrylic, have many advantages for optical, non-toxic and micro-device application. We studied dry etching of PC and PMMA as a function of % gas ratio in the $O_2/SF_6/CH_4$ temary plasma. A photoresist pattern was defined on the polymer samples with a mask using a conventional lithography. Plasma etching was done at 100 W RIE chuck power and 10 sccm total gas flow rate. The etch rates of PMMA were typically 2 times higher than those of PC in the whole experimental range. The result would be related to higher melting point of PC compared to that of PMMA. The highest etch rates of PMMA and PC were found in the $O_2/SF_6$ discharges among $O_2/SF_6$, $O_2/CH_4$ and $SF_6/CH_4$ and $O_2/SF_6/CH_4$ plasma composition (PC: ${\sim}350\;nm/min$ at 5 sccm $O_2/5$ sccm $SF_6$, PMMA: ${\sim}570\;nm/min$ at 2.5 sccm $O_2/7.5$ sccm $SF_6$). PC has smoother surface morphology than PMMA after etching in the $O_2/SF_6/CH_4$ discharges. The surface roughness of PC was in the range of 1.9$\sim$3.88 nm. However, that of PMMA was 17.3$\sim$26.1 nm.