DOI QR코드

DOI QR Code

Analysis of the Effect of the Etching Process and Ion Injection Process in the Unit Process for the Development of High Voltage Power Semiconductor Devices

고전압 전력반도체 소자 개발을 위한 단위공정에서 식각공정과 이온주입공정의 영향 분석

  • Received : 2023.09.19
  • Accepted : 2023.11.01
  • Published : 2023.12.31

Abstract

Power semiconductors are semiconductors used for power conversion, transformation, distribution, and control. Recently, the global demand for high-voltage power semiconductors is increasing across various industrial fields, and optimization research on high-voltage IGBT components is urgently needed in these industries. For high-voltage IGBT development, setting the resistance value of the wafer and optimizing key unit processes are major variables in the electrical characteristics of the finished chip. Furthermore, the securing process and optimization of the technology to support high breakdown voltage is also important. Etching is a process of transferring the pattern of the mask circuit in the photolithography process to the wafer and removing unnecessary parts at the bottom of the photoresist film. Ion implantation is a process of injecting impurities along with thermal diffusion technology into the wafer substrate during the semiconductor manufacturing process. This process helps achieve a certain conductivity. In this study, dry etching and wet etching were controlled during field ring etching, which is an important process for forming a ring structure that supports the 3.3 kV breakdown voltage of IGBT, in order to analyze four conditions and form a stable body junction depth to secure the breakdown voltage. The field ring ion implantation process was optimized based on the TEG design by dividing it into four conditions. The wet etching 1-step method was advantageous in terms of process and work efficiency, and the ring pattern ion implantation conditions showed a doping concentration of 9.0E13 and an energy of 120 keV. The p-ion implantation conditions were optimized at a doping concentration of 6.5E13 and an energy of 80 keV, and the p+ ion implantation conditions were optimized at a doping concentration of 3.0E15 and an energy of 160 keV.

파워반도체는 전력의 변환, 변압, 분배 및 전력제어 등을 감당하는데 사용되는 반도체이다. 최근 세계적으로 고전압 파워반도체의 수요는 다양한 산업분야에 걸쳐 증가하고 있는 추세이며 해당 산업에서는 고전압 IGBT 부품의 최적화 연구가 절실한 상황이다. 고전압 IGBT개발을 위해서 wafer의 저항값 설정과 주요 단위공정의 최적화가 완성칩의 전기적특성에 큰 변수가 되며 높은 항복전압(breakdown voltage) 지지를 위한 공정 및 최적화 기술 확보가 중요하다. 식각공정은 포토리소그래피공정에서 마스크회로의 패턴을 wafer에 옮기고, 감광막의 하부에 있는 불필요한부분을 제거하는 공정이고, 이온주입공정은 반도체의 제조공정 중 열확산기술과 더불어 웨이퍼 기판내부로 불순물을 주입하여 일정한 전도성을 갖게 하는 과정이다. 본 연구에서는 IGBT의 3.3 kV 항복전압을 지지하는 ring 구조형성의 중요한 공정인 field ring 식각실험에서 건식식각과 습식식각을 조절해 4가지 조건으로 나누어 분석하고 항복전압확보를 위한 안정적인 바디junction 깊이형성을 최적화하기 위하여 TEG 설계를 기초로 field ring 이온주입공정을 4가지 조건으로 나누어 분석한 결과 식각공정에서 습식 식각 1스텝 방식이 공정 및 작업 효율성 측면에서 유리하며 링패턴 이온주입조건은 도핑농도 9.0E13과 에너지 120 keV로, p-이온주입 조건은 도핑농도 6.5E13과 에너지 80 keV로, p+ 이온주입 조건은 도핑농도 3.0E15와 에너지 160 keV로 최적화할 수 있었다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(NRF-2022R1F1A107156611)입니다.

References

  1. Kang, E. G., Kim, B. J., and Lee, Y. H., "A Study on Electrical Characteristics of Trench Field Ring for Breakdown Characteristics," J. Korean Inst. Electr. Electron. Mater. Eng., 23(1), 1-5 (2010). https://doi.org/10.4313/JKEM.2010.23.1.001
  2. Kim, S. C. and Kim E. D., "Electrical Characterization and Metal Contacts of ZnO Thin Films Grown by the PLD Method," J. Korean Inst. Electr. Electron. Mater. Eng., 15(1), 15-23 (2002). https://doi.org/10.4313/JKEM.2002.15.1.015
  3. Kang, E. G., "Study on 3.3 kV Super Junction Field Stop IGBT According to Design and Process Parameters," J. Korean Inst. Electr. Electron. Mater. Eng., 30(4), 210-213 (2017). https://doi.org/10.4313/JKEM.2017.30.4.210
  4. Vaid, R. and Padha, N., "A Novel Trench Gate Floating Islands Power MOSFET (TG-FLIMOSFET): Two-dimensional Simulation Study," Microelectron. Reliab., 88(11), 3316-3326 (2011).
  5. Tam, W. S., Siu, S. L., Wong, O. Y., Kok, C. W., Wong, H., and Filip, V., "Modeling of Terminal Ring Structures for High-voltage Power MOSFETs," Microelectron. Reliab., 52(8), 1645-1650 (2012). https://doi.org/10.1016/j.microrel.2011.10.015
  6. Schaur, S., Stadler, P., Meana-Esteban, B., Neugebauer, H., and Serdar Sariciftci, N., "Electrochemical Doping for Lowering Contact Barriers in Organic Field Effect Transistors," Organic Electronics, 13(8), 1296-1301 (2012). https://doi.org/10.1016/j.orgel.2012.03.020
  7. Darbandy, G., Aghassi, J., Sedlmeir, J., Monga, U., Garduno, I., Cerdeira, A., and Iniguez, B., "Temperature Dependent Compact Modeling of Gate Tunneling Leakage Current in Double Gate MOSFETs," Solid-State Electronics, 81, 124-129 (2013). https://doi.org/10.1016/j.sse.2012.11.009
  8. Kang, E. G., "Optimal Design of Field Ring for Power Devices," Inst. Korean Electr. Electron. Eng., 14(3), 199-204 (2010).
  9. Jung, E. S., Kyoung, S. S., Chung, H., and Jang, E. G., "A Study of Field-Ring Design using a Variety of Analysis Method in Insulated Gate Bipolar Transistor (IGBT)," J. Electr. Eng. Technol., 9(6), 1995-2003 (2014). https://doi.org/10.5370/JEET.2014.9.6.1995
  10. Niedernostheide, F. J., Schulze, H. J., Laska, T., and Philippou, A., "Progress in IGBT Development," IET Power Electron., 11(4), 646-653 (2018). https://doi.org/10.1049/iet-pel.2017.0499
  11. NCS(National Competency Standards), Electrical and Electronics, Electronic Device Development, Semiconductor Development, Learning Modules.
  12. Kim, B. H., Shin, H. K., Park, J. Y., and Chang, S. M., "Optimizing Collector-Emitter Saturation Voltage at 3000 V Insulated Gate Bipolar Transistors Using Laser Thermal Annealing," Trans. Electr. Electron. Mater., 20, 7-11 (2018).
  13. Kim, B. H., Park, J. Y., Park, K. H., Shin, H. K., Kim, G. J., and Chang, S. M., "Optimized Design of Multi-Zone Junction Termination Extension for High Voltage Power Devices (IGBTs)," J. Nanosci. Nanotechnol., 17(8), 5606-5611 (2017). https://doi.org/10.1166/jnn.2017.14181
  14. Williams, K. R., Gupta, K., and Wasilik, M., "Etch Rates for Micromachining Process-partII," J. Microelectromech. Syst., 12(6), 761-778 (2003). https://doi.org/10.1109/JMEMS.2003.820936
  15. Ion Implantation Chapter 7, Semiconductor Materials Lab, Hanyung University.
  16. Kim, B. H., Park, G. H., Choi, J. G., and Chang, S. M., "Study on the Breakdown Voltage in the Implantion and Drive in Process," Korea/Japan/Taiwan Chemical Engineering Conference (2019).