Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2021.11.02.010

Atmospheric Pressure Plasma Etching Technology for Forming Circular Holes in Perovskite Semiconductor Materials  

Kim, Moojin (Department of IoT Electronic Engineering, Kangnam University)
Publication Information
Journal of Convergence for Information Technology / v.11, no.2, 2021 , pp. 10-15 More about this Journal
Abstract
In this paper, we formed perovskite (CH3NH3PbI3) thin films on glass with wet coating methods, and used various analytical techniques to discuss film thickness, surface roughness, crystallinity, composition, and optical property. The coated semiconductor material has no defects and is uniform, the surface roughness value is very small, and a high absorption rate has been observed in the visible light area. Next, in order to implement the hole shape in the organic-inorganic layer, Samples in the order of a metal mask with holes at regular intervals, a glass coated with a perovskite material, and a magnet were etched with atmospheric pressure plasma equipment. The shape of the hole formed in the perovskite material was analyzed by changing the time. It can be seen that more etching is performed as the time increases. The sample with the longest processing time was examined in more detail, and it was classified into 7 regions by the difference according to the location of the plasma.
Keywords
Wet coating; Perovskite; hole pattern; Atmospheric pressure plasma; Etching process;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Khachatryan, H. P. Kim, S. N. Lee, H. K. Kim, M. J. Kim, K. B. Kim & J. Jang (2018). Novel method for dry etching CH3NH3PbI3 perovskite films utilizing atmospheric-hydrogen -plasma. Materials Science in Semiconductor Processing, 75, 1-9. DOI : 10.1016/j.mssp.2017.11.019   DOI
2 H. Khachatryan, Y. H. Kim, K. B. Kim, H. J. Yang & M. J. Kim (2019). Direct etching of perovskite film by electron-beam scanning. Materials Science in Semiconductor Processing, 90, 171-181. DOI : 10.1016/j.mssp.2018.10.022   DOI
3 C. Tendero, C. Tixier, P. Tristant, J. Desmaison & P. Leprince (2006). Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B: Atomic Spectroscopy, 61(1), 2-30. DOI : 10.1016/j.sab.2005.10.003   DOI
4 U. Kogelschatz (2004). Atmospheric-pressure plasma technology. PLASMA PHYSICS AND CONTROLLED FUSION, 46, B63-B75. DOI : 10.1088/0741-3335/46/12B/006   DOI
5 K. B. Kim, J. P. Lee, & M. J. Kim (2019). Optical and electrical properties of AZO thin films deposited on OHP films. Journal of Convergence for Information Technology, 10(9), 28-34. DOI : 10.22156/CS4SMB.2020.10.09.028   DOI
6 E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T. Y. Yang, J. H. Noh & J. W. Seo (2019). Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 567, 511-515. DOI : 10.1038/s41586-019-1036-3   DOI
7 X. X. Gao, W. Luo, Y. Zhang, R. Hu, B. Zhang, A. Zuttel, Y. Feng & M. K. Nazeeruddin (2020). Stable and High-Efficiency Methylammonium-Free Perovskite Solar Cells. ADVANCED MATERIALS, 32(9), 1905502. DOI : 10.1002/adma.201905502   DOI
8 K. B. Kim, J. P. Lee, M. J. Kim & Y. S. Min (2019). Trend of Crystallization Technology and Large Scale Research for Fabricating Thin Film Transistors of AMOLED Displays. Journal of Convergence for Information Technology, 9(5), 117-124. DOI : 10.22156/CS4SMB.2019.9.5.117   DOI
9 M. S. Alias, Y. Yang, T. K. Ng, I. Dursun, D. Shi, M. I. Saidaminov, D. Priante, O. M. Bakr & B. S. Ooi (2016). Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications. The Journal of Physical Chemistry Letters, 7(1), 137-142. DOI : 10.1021/acs.jpclett.5b02558   DOI
10 K. B. Kim, J. P. Lee, M. J. Kim & Y. S. Min (2019). Characteristics of Excimer Laser-Annealed Polycrystalline Silicon on Polymer layers. Journal of Convergence for Information Technology, 9(3), 75-81. DOI : 10.22156/CS4SMB.2019.9.3.075   DOI
11 Z. Li, J. Moon, A. Gharajeh, R. Haroldson, R. Hawkins, W. Hu, A. Zakhidov & Q. Gu (2018). Room-Temperature Continuous-Wave Operation of Organometal Halide Perovskite Lasers. ACS Nano, 12(11), 10968-10976. DOI : 10.1021/acsnano.8b04854   DOI
12 H. P. Kim, M. J. Kim, K. B. Kim, H. Khachatryan & J. Jang (2017). Properties of atmospheric hydrogen-plasma-treated CH3NH3PbI3 perovskite films. Surface & Coatings Technology, 330, 228-233. DOI : 10.1016/j.surfcoat.2017.09.002   DOI
13 X. Mathew, J. P. Enriquez, A. Romeo & A. N. Tiwari (2004). CdTe/CdS solar cells on flexible substrates. Solar Energy, 77(6), 831-838. DOI : 10.1016/j.solener.2004.06.020   DOI
14 D. Ban, H. Luo, H. C. Liu, Z. R. Wasilewski, A. J. SpringThorpe, R. Glew & M. Buchanan (2004). Optimized GaAs∕AlGaAs light-emitting diodes and high efficiency wafer-fused optical up-conversion devices. Journal of Applied Physics, 96(9), 5243. DOI : 10.1063/1.1785867   DOI
15 L. Uhlig, M. Wachs, D. J. Kunzmann & U. T. Schwarz (2020). Spectral-temporal dynamics of (Al,In)GaN laser diodes. Optics Express, 28(2), 1771-1789. DOI : 10.1364/OE.382257   DOI
16 K. B. Kim, M. J. Kim, J. H. Baek, Y. J. Park, J. R. Lee, J. S. Kim & C. W. Jeon (2014). Influence of Cr Thin Films on the Properties of Flexible CIGS Solar Cells on Steel Substrates. Electronic Materials Letters, 10(1), 247-251. DOI : 10.1007/s13391-013-3158-3   DOI