• Title/Summary/Keyword: path integral

Search Result 118, Processing Time 0.022 seconds

Application of p-Version Crack Model Based on J-integral Method in LEFM Analysis (선형탄성 파괴역학해석에서 J-적분법에 의한 p-Version 균열모델의 적용)

  • 이채규;우광성;김영인
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.137-148
    • /
    • 1995
  • A new path independent contour integral formulus for the distinct calculation of mode I stress intensity factors in two dimensional linear elastic fracture mechanics problems is presented. This method is based on p-convergence concepts and can be easily appended to existing finite element computer codes. In this study, the stress state at crack tip has been investigated and the path independence of J-integral values has been tested with respect to different contours expressed by normalized distance apart from the crack tip. Numerical results by p-convergence for the problems such as centrally cracked panels, single and double edged cracks in rectangular panels have been compared with those by the conventional h-convergence. The comparison demonstrates the accuracy and stability of the proposed method.

  • PDF

Scattering of arbitrarily large targets above a ground using steepest descent path integration (최대경사 적분법을 이용한 지면위 큰 대형 표적의 산란 특성)

  • Lee, Seung-Hak;Kim, Che-Young;Lee, Chang-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.7
    • /
    • pp.38-45
    • /
    • 2002
  • This paper derives the electric field integral equation to calculate scattering from arbitrary large target above and radiating of an electric line source within a lossy ground. Sommerfeld’s type integral requires a lot of time to calculate and has some difficulties and limitations for an analysis region. But SDP (steepest descent path) integration gives fast calculation of the integral, and the result shows that SDP integration has the validity for all over the analysis region with fast evaluation. Moment method with SDP integration is used to calculate the scattering of an arbitrary large conducting target and the results are compared with that of the numerical integration with Gaussian quadrature rule and GPOF (generalized pencil of function) method.

Comparison of Force Calculation Methods in 2D and 3D Finite Element Method

  • Yan Xiuke;Koh, Chang-Seop;Ryu, Jae-Seop;Xie Dexin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.137-145
    • /
    • 2001
  • The magnetic force calculation methods, the Maxwell's stress tensor method, virtual work method, and nodal force method, are reviewed and the equivalence of them are theoretically proved. The methods are applied to the magnetic force calculation of 2D linear and nonlinear problems, and 3D nonlinear problem. As the results, the convergence of the methods as the number of elements increases, accuracy of the methods, and integral path dependence of the methods are discussed. Finally some recommendations on the usage of the methods, including the determination of the integral path, are given.

  • PDF

Implementation of local model for non-local impact ionization (Non-local impact ionization 현상해석을 위한 local model 개발)

  • 염기수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.385-388
    • /
    • 1999
  • A new local model for impact ionization coefficients is proposed to account for a non-local effect. New model uses an effective electric field which comes from the path integral of a tangent electric field at an arbitrary point. The model consists of local variables, such as doping concentration, carrier concentration and gradient of the field, and can be easily applied to a conventional drift-diffusion device simulator. By comparing the results with Monte Carlo simulation, it is confirmed that new model explains the non-local effect fairly well.

  • PDF

A NOTE ON SCATTERING OPERATOR SYMBOLS FOR ELLIPTIC WAVE PROPAGATION

  • Kim, Jeong-Hoon
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.349-361
    • /
    • 2002
  • The ill-posed elliptic wave propagation problems can be transformed into well-posed initial value problems of the reflection and transmission operators characterizing the material structure of the given model by the combination of wave field splitting and invariant imbedding methods. In general, the derived scattering operator equations are of first-order in range, nonlinear, nonlocal, and stiff and oscillatory with a subtle fixed and movable singularity structure. The phase space and path integral analysis reveals that construction and reconstruction algorithms depend crucially on a detailed symbol analysis of the scattering operators. Some information about the singularity structure of the scattering operator symbols is presented and analyzed in the transversely homogeneous limit.

Analytics of PIV Measurement and Its Application for Higher Performances

  • NISHIO Shigeru;SUGII Yasuhiko
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.62-74
    • /
    • 2001
  • Present paper describes the principles of PIV measurement approaching from the analytical view, which enables to explain the general form of principles covering all the PIV measurement, and that gives theoretical basis for its higher measurement performances. The explanation of the measurement principles started from the definition of governing equation in differential form as same as the gradient method, and the integral along the particle path line was executed to show the principle of the correlation method with same basis. The integral processes clearly shows the analytical reason why the correlation peak gives the terminal point of path line, and how the effects of deformation and rotation of fluid appears in the correlation map. These results have no differences from our experiences and understandings of the conventional PIV measurement definition in final form. However, the analytical approach enable to understand those facts a priori, and it makes easy to achieve the innovative higher performances of measurement. Analytical explanation clearly shows the behavior of the residual errors caused by the fluid motion, and it enables to analyze the measurement uncertainty theoretically.

  • PDF

Study On Manufacturing of General Cam Using Coordinate Mapping in Multi CNC Machining Center (좌표계 맵핑을 이용한 다축 CNC 머시닝센터에서의 캠 가공에 관한 연구)

  • 박세환;신중호;장세원;강동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.999-1002
    • /
    • 2002
  • Cylindrical Cam Mechanism is widely used in the fields of industries, such as machine tool exchangers, textile machinery. This paper proposes a method for manufacturing of cylindrical cam in Multi CNC machining center. Multi CNC machining center has two different types depending on the tilting axis. For the manufacturing procedures. in this paper the location and the orientation of cutter path are defined from shape design data of cam. The integral NC code fur the both types of multi-axis CNC machining center can be created using the coordinates mapping between design coordinates and work coordinates. Finally, CAD/CAM program is developed on $C^{++}$ language. This program can display manufacturing and kinematics simulation, which can make integral NC code for multi-axis CNC machining center of two types.

  • PDF

Comparison of Force Calculation Methods in Finite Element Method (유한요소법을 이용한 전자기력 계산방법의 비교)

  • Xiuke, Yan;Ryu, Jae-Seop;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.100-103
    • /
    • 2001
  • The magnetic force calculation methods, the Maxwell's stress tensor method, virtual work method, and nodal force method are reviewed. The methods are applied to the magnetic force calculation of 2D linear and nonlinear Problems. As the results the convergence of the methods as the number of elements increases, accuracy of the methods, and integral path dependence of the methods are discussed. Finally some recommendations on the usage of the methods, including the determination of the integral path, are given.

  • PDF

The Effect of residual stress for fracture behavior in the laser weldment (레이저용접부의 파괴에 미치는 잔류응력의 영향)

  • Jo, Seong-Gyu;Yang, Yeong-Su
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.06a
    • /
    • pp.3-8
    • /
    • 2006
  • The integrity of laser welded structures is decided with fracture strength and fatigue strength. This study presents fracture behavior considering residual stress in the laser welding. Experiments are conducted and analyses are performed to explore the influence of residual stress on fracture behavior of bead-on laser welded compact specimen. Fracture experiments are performed using ASTM 1820. The performed analyses included thermo-elasto-plastic analyses for residual stress and subsequent J-integral calculation. A modified J integral is calculated in the presence of residual stresses. The J-integral is path-independent for combination of residual stress field and stress due to mechanical loading. The results indicates that the tensile residual stress near crack front bring the low fracture load while the compressive residual stress bring the high fracture load compared to no residual stress specimen. These results quantitatively understand the influence of residual stress on fracture behavior.

  • PDF

Evaluation of J-integrals by Finite Element Model Based on EDI Method (EDI방법에 의한 유한요소모델의 J-적분값 산정)

  • 신성진;홍종현;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.62-69
    • /
    • 1996
  • In this study, an equivalent domain integral (EDI) method is presented to estimate the track-till integral parameter, J-value, for two dimensional cracked elastic bodies which may quantify the severity of the crack-tit) stress fields. The conventional J-integral method based on line integral has been converted to equivalent area or domain integrals by using the divergence theorem. It is noted that the EDI method is very attractive because all the quantities necessary for computation of the domain integrals are readily available in a finite element analysis. The details and its implementation are extened to both h-version finite element model with 8-node isoparametric element and p-version finite element model with high order hierarchic element using Legendre type shape fuctions. The variations with respect to the different path of domain integrals from the crack-tip front and the choice of 5-function have been tested by several examples.

  • PDF