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A NOTE ON SCATTERING OPERATOR
SYMBOLS FOR ELLIPTIC WAVE PROPAGATION

JeEoNnc-HooN KiMm

ABSTRACT. The ill-posed elliptic wave propagation problems can
be transformed into well-posed initial value problems of the reflec-
tion and transmission operators characterizing the material struc-
ture of the given model by the combination of wave field splitting
and invarijant imbedding methods. In general, the derived scatter-
ing operator equations are of first-order in range, nonlinear, nonlo-
cal, and stiff and oscillatory with a subtle fixed and movable singu-
larity structure. The phase space and path integral analysis reveals
that construction and reconstruction algorithms depend crucially
on a detailed symbol analysis of the scattering operators. Some in-
formation about the singularity structure of the scattering operator
symbols is presented and analyzed in the transversely homogeneous
limit.

1. Introduction

For many realistic three-dimensional wave propagation problems, one-
way marching methods are incorporated into the solution algorithm for
the inherently elliptic, frequency-domain, scalar Helmholtz formulation,
as in Fishman’s articles [3] and [4], which has widespread applicabil-
ity in acoustics, quantum mechanics, etc. In general, marching elliptic
methods require not only the back propagation of a backward wave field
component but also the knowledge of both the wave field and its normal
derivative on an initial plane. The first requirement leads to an ill-posed
problem which requires a regularization that effectively filters out the
evanescent portion of the spectrum. For strongly backscattering environ-
ments, such filtering can result in spurious oscillations in the wave field,
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which suggests the important role played by the high-frequency portion
of the spectrum under such conditions. Since both wave field and its nor-
mal derivative can not be independently specified on the initial plane, on
the other hand, the second requirement provides more troubles. Given
the initial wave field, the determination of the corresponding normal de-
rivative requires scattering data from the entire domain. Constructing
this scattering information, however, effectively solves the original prob-
lem. Therefore, one recognizes that the two-point Helmholtz boundary
value problem basically as scattering problems in terms of a transition
region and transversely inhomogeneous half-spaces and it is desirable to
develop an algorithm for the elliptic propagation problem which can use
marching methods as much as possible in a well-posed manner.

Wave field splitting, invariant imbedding, and phase space and infi-
nite functional analysis have been combined to transform the Helmholtz
two-point boundary value problem on wave fields into an initial value
problem on the scattering operators characterizing inhomogeneity of the
transition region. The wave field splitting incorporates the kinemati-
cally correct physics and provide an effective representation for the weak
range-dependent limit. Invariant imbedding provides the derivation of
the scattering operator equations. The combined wave splitting and in-
variant imbedding methods were initiated by Bremmer [1] and developed
by Corones and coworkers [2] and [8]. The phase space (or microscopic)
and path integral methods transform the ill-behaved operator equations
into equations on well-behaved functions and also provide the one-way
propagation algorithms. Refer to [5] for phase space methods and [9] for
path integral representations. The system of the resulting equations for
the reflection and transmission operators is now well-posed but stiff and
oscillatory. The reflected and transmitted wave fields can be computed
in a very efficient manner while the wave field in the transition region
can be computed by essentially a layer stripping algorithm. In principle,
the transition region can be divided into subregions, allowing for parallel
computations and subsequent recombination.

Associated with the reflection, transmission, and square root Helm-
holtz operators, the operator symbol analysis plays an important role
for both direct and inverse problems. The operator symbols provide
the natural multidimensional extension of the scattering coefficients in
the one-dimensional formulation and the framework to quantize clas-
sical theories in quantum physics. In general, the resulting equations
for the scattering operators are first-order in range, nonlinear, nonlocal,
and stiff and oscillatory with a fixed and movable singularity structure.
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Motivated by this observation, the analysis and subsequent exploitation
of the singularity structure associated with the scattering operator sym-
bols are the essential focus of the direct and inverse developments. The
constructions of exact and approximate scattering operator symbols il-
lustrate the general singularity structure and scattering theory, provide
numerical benchmarks, and serve as an independent source of scatter-
ing data for the inverse problem. As an initial step toward the general
case where the equations are nonlocal and of the composition type, the
transversely homogeneous case is studied in this paper.

2. One-way evolution equations

The initial model for the problem of present interest is given by the
scalar Helmholtz equation

(1) (V2 + B K*(x))¢(x) = 0,

where k is a reference wave number and K (x) is a refractive index field
as a (sufficiently) smooth function of x in the n-dimensional space R".
The environment can be characterized by K(x) with a transition re-
gion of arbitrary variability superimposed upon a transversely inhomo-
geneous background profile. The vertical lines define the boundary of the
transition region. The adopted model can be thought of as an infinite
waveguide.

The basic idea of the first step of analysis for the problem is to apply
wave field splitting and invariant imbedding methods to transform the
boundary value problems into initial value problems. As defined in the
book [11], the following equation is taken to define the wave splitting
employed in the general inhomogeneous medium.

(2) ¢F(x) = (1/2)(¢(x) F (i/k)B~10:4(x))
(3) B = (K*(x) + (1/K%) V)2,

where z € R and x; € R" ! are designated as the principal global
propagation direction and the transverse direction, respectively. For the
general inhomogeneous transition region, ¢ (x) and ¢~ (x) do not have
a physical meaning whereas they represent physically identificable for-
ward and backward wave field components of the total wave field ¢(x),
respectively, in the transversely inhomogeneous environments. The lat-
ter case corresponds to the diagonal system of the following complete
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system for ¢7(x) and ¢~ (x) holding in all three regions:
(4) 8:0™(x) = ((—i/2)8:By" + 1)iB16* (x) + ((4/2)0:B; 1)iB2¢™ (),
(5) 90 (x) = ((/2)0, BT )iB1g™ (x) + ((—i/2)0:B5* + 1)iBag™ (%),

where By, By are —kB, kB, respectively; B; was chosen to correspond
to the forward wave radiation condition and Bs to correspond to the
backward wave radiation condition. In the transversely inhomogeneous
environments, the forward and backward evolution equations are

6)  (i/k)Dg*(z, %) £ (K3 (xe) + (1/K*)VE)/2¢% (2, %) = 0.

These uncoupled equations are the formally exact wave equations sup-
plemented with appropriate outgoing wave radiation and initial value
conditions.

For wave propagation problems in the presence of two transversely
inhomogeneous half-spaces separated by a planar transition region of
arbitrary length and inhomogeneity, system (4)—(5) represents a type of
two-point boundary value problem for the reflected, transmitted, and
internal wave fields. This first-order system is ill-posed for marching in
the sense that both ¢*(z,x;) and ¢~ (z,x;) cannot be marched in the
same direction in a well-posed manner although their one-way equations
are well-posed only in the +x and —z directions, respectively. Even
if (4)-(5) was well-posed for marching, it would still be necessary to
determine either ¢~ (z,x;) or ¢ (z,x;) in the left or right half-space,
respectively. This can be accomplished by explicitly using the scattering
nature of the propagating problem. Let the left and right boundaries of
the transition region be located at x = a and z = b, respectively, and
a source at one point in each half-space. Then the incident wave fields
are related to the scattered wave fields through scattering operators as
follows.

(7) ¢* (b,xe) = T (a,0)¢” (a, %) + R™(a,b)¢~ (b, %),
(8) ¢~ (a, %) = R (a,b)¢* (a,%x;) + T (a,b)¢™ (b, xz),

where the scattering operators R*(a,b) and T*(a,b) denote the for-
ward and backward reflection and transmission operators, respectively,
associated with the transition region ¢ < z < b. From (7)—(8), the
construction of the scattering operators leads to the determination of
¢~ (a,x;) and ¢* (b, x;), which provides the initial data for the compu-
tation of the reflected and transmitted wave fields by one-way marching
algorithms. Finally, the transition region wave field is computed in a
layer-stripping way.
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The construction of the operator-valued scattering matrix can be
achieved by invariant imbedding methods. Invariant imbedding intu-
itively views the scattering matrix for a finite region as being composed
of scattering matrices of a large number of contiguous subregions and
thus computes the effect of adjoining a very thin slab to the one side of
the transition region. These ideas are well known techniques not only
for deterministic problem but also for stochastic problems (for example,
[7]) of linear wave equations in both the time and frequency domains.
The first step for obtaining the scattering matrix is to start from a
finite number of transversely inhomogeneous layers and the correspond-
ing combinatorial equations of the forward and backward reflection and
transmission operators. The ncxt step is to represent the operators in
terms of the square root operator B and its inverse. Then writing the
equations to an order of Az has to be accomplished. Finally, taking the
limit of equations as Ax goes to zero leads to the continuum limit for
the smoothly imbedded transition region. If one follows the prescribed
steps, then with brief notation

(9) R{ =R¥(¢,z), TF = T¥(a,z),
(10) R =R*(z,b), TF=T%(,b),
the resultant imbedding equations arc given by the following Riccati

equations for reflection and transmission operators. For R*(a,z) and
T*(a,2),

(11) (i/k)0:Rf = T| BTY,
(12) (i/k)0, TT = T} + R BT,
(13) (i/k)0. Ry = —B+ aR| — R 6 + R BRY,

(14) (i/k)8, Ty = —T[d + T; BR,

which are well-posed for one-way marching in the +z direction, and for
R*(z,b) and T*(z,b)

(15) (i/k)0:.R5 = -3 + 6RS — Rfa + R} AR,
(16) (i/k)0, T = ~TJa + T5BRY,

(17) (i/k)0.R; = T5 BT,

(18) (i/k)8,T; = 6T, + Ry BT,

which are well-posed for one-wav marching in the —z direction, where
the operators a(z), B(z) and §(zx) are given by a = ((i/2k)0,B~1—1)B,
8 = ((i/2k)0.B~1)B, § = ((i/2k)0,B~! + 1)B. These first-order, cou-
pled (except for R| and R;r ), non-linear system of operator equations
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have the initial conditions
(19) Ri(z=0a)=0, Ti@x=a)=1,
(20) Ri(z=b0)=0, Ti(z=b=1

Therefore, a well-posed, one-way, initial value problem has been ob-
tained from the ill-posed, two-point, Helmholtz boundary value problem;
the two wave field components are ill-posed for simultaneous marching,
whereas the wave field ¢ (x, %) (or ¢~ (x,x;)) and the scattering opera-
tors R¥ and T (or RY and TF) can be marched in opposite directions
to solve the (two-way) elliptic problem.

3. Phase space analysis and path integral representation

Considering the transition region modeled by a (large) finite num-
ber of transversely inhomogeneous layers, it is assumed that B depends
upon z parametrically. Then it suffices to look at equation (6). This
formal one-way wave equation is a singular integrodifferential equation.
The square root of two noncommuting operators must be constructed.
While functions of a finite set of commuting self-adjoint operators can
be constructed through spectral theory, nontrivial functions of noncom-
muting operators have to be represented by pseudodifferential operators.
The pseudodifferential operator theory can extend homogeneous Fourier
analysis to inhomogeneous environments. See [10] for general reference.
Now, using the results from [6], the formal one-way wave equation (6)
can be written explicitly as a Weyl pseudodifferential equation in the
form

(21) (/R)0.6* o0 + (R/20 ™ [ dx, dpy m(pus (31 + X)/2)-

R2(n—1}
-exp(tkp: - (% — %,))¢7 (2, %,) = 0,

where Qp(p,q) is the operator symbol associated with the square root
Helmholtz operator B = (K?(q) + (1/k%)V2)¥/2. The singular operator
(kernel) calculus is now replaced by a calculus for a smooth, well-behaved
functions, i.e., operator symbols, which contain the complete spectral
information in just the appropriate manner to lead to the infinitesimal
propagator.

Therefore, operator symbols must be constructed. The square root of
an operator is constructed in terms of its square. For the Weyl pseudodif-
ferential operator calculus, it implies that the operator symbol Qg(p, q)
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is defined through the Weyl composition equation

Op2(p,q) = K*(q) ~ p
(22) = (R /m)2n=1) / dt dx dy dz Qs (t + p, x + q)
RMn-1)

OBy +p,z+ q)exp(2ik(x -y — t - 2)),

where Qg2(p,q) is the operator symbol associated with the square of
B. For a given K2(q), the Weyl composition equation must be solved
with the outgoing wave radiation condition.

Solution representation for the pseudodifferential equation (21) can
be directly expressed in terms of Feynman’s path integrals following
from the semigroup property of the propagator. The path integral rep-
resentation for the propagator takes the form

G (z, %0, x;)

N-1 N
(23)= lim IT ax H k/2m)" Ldpjq
Pl

N—oo Jp(n-1)(2N-1)
N
- exp Z Pjt - (Xt — Xj—1) + (/N)YH(Pjt, Xjt, Xj-1¢)) | »

where

(24) H(p,q',q) = (k/2m)" / ds dt
RQ(n 1
F(d —q",s)ha(p, (@ +4q)/2 — t) exp(iks - t).

Here, F(u,v) and hp (the standard pseudodifferential operator sym-
bol) are related to the operator symbol 2g(p,q) through Qg(u,v) =
F(u,v)hg(u,v), where Qp and hg(p,q) denote the corresponding
Fourier transforms. The path in phase space in equation (23) is de-
fined by the prescription xg; = x;, xjt = %¢(J/N), XNt = X¢, Pjt =
p:((j — 1/2)/N) placing p;; halfway between x;; and x;_1;. Note the
analogy between present wave propagation problem and the quantum
mechanical problem. In quantum mechanics, hg(p,q) is the classical
Hamiltonian and F'(u,v) is a function determining the ordering of the
two noncommuting operators Q = q and P = (—i/k)0q
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4. One-way marching algorithm

Now, the wave field splitting, invariant imbedding, and phase space
and path integral analysis can be combined to yield an explicit one-
way marching algorithm. The algorithmic application of the solution
method proceeds in the following way. The basic idea is to compute the
reflection and transmission operator symbols and then, in the manner
prescribed by the Weyl symbol calculus, apply them to the appropriate
incoming fields to produce the appropriate initial data for well-posed,
one-way marching.

For a detailed illustration, it is assumed that there is a wave source
only in the left half-space. The embedding equations for reflection and
transmission operators are changed into equations for operator symbols.
These symbols can be simultaneously solved in an efficient manner due
to their own one-way nature; the equations are marched from = = b
in incremental step to x = @ and then recovers the physical medium.
Fach incremental strip is transversely inhomogeneous. If only scattering
fields are desired, the storage requirements are minimal since only the
operator symbols for the physical medium are required. If the wave field
in the transition region is also desired, then the incremental reflection
operator symbols corresponding to the successive imbedding problems
must be stored. Starting from the physical problem at x = a, ¢~ (a™, x;)
is determined from the given ¢ (a™, x;), the determined reflection oper-
ator symbol QR2+ (a,b), and the Weyl symbol calculus. The continuous

wave fields ¢(a,x:) and 9;¢(a,x;) at £ = a then follow from the wave
splitting equations

(25) ¢($)xt) = ¢+(.’E,Xt) + (,i)_(x,Xt),
(26) B:d(x, x¢) = iB197 (z,%¢) + iBag™ (2, %),

and ¢%*(a*,x;) is now determined by (2). The Weyl symbol calculus
and the approximate constructions of the square root operator symbols
are used in the applications of (2) and (25)-(26). In the transversely
inhomogeneous strip, ¢*(at,x;) is now marched to z = (a + Az)™,
producing ¢*((a + Az)7,x;). Then one now has the problem of an
incoming wave field incident upon a new slab a + Az < z < b with
a known reflection operator symbol previously calculated and stored in
the invariant imbedding procedure. The above outlined procedure is
then repeated in a layer-stripping manner to z = b. The traveling wave
fields are always propagated in their well-posed directions. The two-way
nature of the elliptic problem in the transition region is accounted for
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by first marching the reflection operator symbol equation from =z = b
to x = a, and then successively calculating the wave field by marching
back from z = a to x = b.

5. Symbol analysis in the transversely homogeneous limit

Wave field splitting, invariant imbedding, and phase space and path
integral methods have been put together to transform the ill-posed
Helmholtz two-point boundary value problem of wave fields into well-
posed initial value problems of the scattering operators characterizing
the transition region. This is a natural way to incorporate well-posed
marching methods into the inherently two-way problem. For the compu-
tational one-way algorithm, the operator symbols associated with reflec-
tion, transmission, and square root Helmholtz operators play a pivotal
role. In general, the resulting equations for the reflection and transmis-
sion operator symbols are first-order in range, nonlinear, nonlocal, and
stiff and oscillatory with a subtle fixed and movable singularity structure.
Essentially the analysis and subsequent exploitation of the singularity
structure with the scattering operator symbols are the focus of the direct
and inverse developments. Toward the exact and approximate construc-
tions of the operator symbols in the general inhomogeneous medium,
the transversely homogeneous case is considered from now on. This
problem is mathematically simpler but contains both mathematical and
computational complications including the singularity structure of the
multidimensional general case.

The profile in the transversely homogeneous limit is defined by

Klz, r<a
(27) K*(z,x) = ¢ K?*(z), z€]a,b]
K2, z>b

where K7 and K3 are constants and K(z), a < z < b, is assumed to be
smoothly continuous with the constants.

For the limiting case of the transversely homogeneous environment,
the embedding equations such as (15)-(16) can be equivalently written as
the operator symbol equations in the following local form. The reflection
and transmission operator symbol equations are

(i/k)0: g+ (z,b;0) = 2(K%(x) — p*) /2 Qp+ (2, by p)
(28) +(i/2k) (K (2) K (2)/ (K (z) — p?))
x (1- 05 (z,b;p)), Qre+(bb;p) =0,
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(i/R):Sz+ (2, b9) = ((i/2RK (@)K (2)/ (K> (2) = p)
(29) +E2(2) - 512 Qe (2,55)

—(i/2k)(K (2)K (z)/(K*(z) — p*))
><QR+ ("Bv b,p) QT+ (CE, b;p)v QT+ (ba b; p) =1,

where an appropriate outgoing wave radiation condition is understood.
The above symbol equations are well-posed, stiff, oscillatory Riccati sys-
tems with a fixed and movable singularity structure. The stiffness is seen
to arise from the local reflections and transmissions.

Since the analysis and subsequent exploitation of the singularity struc-
ture associated with the scattering operator symbols are the essential
focus of the both direct and inverse algorithm developments, the sin-
gularity structures of the operator symbols in the transversely homo-
geneous limit are presented here in detail. In the limiting case of a
transversely homogeneous transition region, the reflection and transmis-
sion operator symbols can be written exactly in terms of the solutions
of the corresponding one-dimensional, reduced Helmholtz equation and
subsequently the singularity structures of the operator symbols are well
identified and classified for each fixed variable z or p. To obtain these
representations of the scattering operator symbols, let u.(z,b;p) and
us(z,b;p) be the solutions of the one-dimensional reduced Helmholtz
equations

(30) 02, ug(z, b;p) + k(K2 (x) — p*)ug(e, bip) = 0,
uc(b7 b’ p) = 17 8zu0(b$ ba p) = 0)
us(ba b;p) =0, azus(bv b;p) =1,
and 1(z, b; p) denotes a linear combination of these solutions defined by
W(z,b;p) = uc(x,b;p) + ik(K2(b) — p*)*/?us(z,b;p). Then, using that
in the transversely homogeneous limit Qg-1(z,b;p) = (K*(z) — p?)~1/2
and combining the symbolic forms of splitting equations (2)-(3) and
definitions of the reflection and transmission operators result in
— 0, (=, b3 p) + ik(K>(2) — p*)"29(z, bip)
8:9(z, b p) + ik(K2(2) — p?)Y/*4(z, bp)’
2k (K2(z) — p2)L/2
dxtp(x, b; p) + ik(K2(z) — p?)/2¢(x, b; p)
From the above representations (31)-(32), one can identify the sin-
gularity structure, i.e., fixed singularities (turning points, focal points,

(32)
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cusps, and kinks) and movable singularities (poles), of the scattering
operator symbols. For fixed p, the singularities of Qgr+(z,b;p) and
Qr+(z,b;p) are fixed singularities and movable poles. In the case of
fixed z, the singularities of Qg (z,b;p) and Qr+(z, b;p) are weak sin-
gularities (cusps and kinks) and poles. Using the detailed singularity
structure of the scattering operator symbols, one can obtain the follow-
ing equivalent statements for locating the poles of the scattering operator
symbols.

e For some fixed p > 0, Qg+ (z,b;p) (or Qe+ (z,b;p)) has a pole at

z = zg € [a,b].

o K2(b) < p? K?(zg) < p? < K2, and 8,9 (zo,b; p) +ik(K2%(zo) —

p?)/24(x0, b;p) = 0.

(BVP) K2(b) < p?, K?(z0) < p? < K2,,,, and equation

82 u(x,b;p) + K*(K*(z) — pPJu(z,bip) =0, zo <z <D,

has a solution satisfying the boundary condition Oru(zg, b;p) —
k(p? — K*(20))"/?u(xo, b;p) = 0 and 8zu(b, b;p) +k(p® — K>(b))"/?
u(b, b;p) = 0.

(EVP) K2(b) < p?, K2(z0) < p? < K2,,,, and equation
02, v(z, b p) + k*(K*(z) — p*)u(z, bip) =0, —oo <z < oo,

has a solution satisfying v(z, b;p) — 0 as z — —oo and v(z, b;p) —
0 or u(b,b;p) (depending on whether KZ < p? or K*(b) = p?) as

x — 00, where K is a smooth extension of K with constants on
the intervals —cc < x < zg and b < z < oc.

From the Riccati equations of the reflection and transmission op-
erator symbols, the residues of the operator symbols Qg+ (x,b;p) and
Qe+ (z,b;p) are given by

(33)

(34)

2050} — p2 ~
QR+(:t,b;p)=2K (zo) —p {x3x0—<ik\/K2(x)—p2

K(ZJQ)KI (l’o)

COVT K2 (g) — p2
+%(K[2{i(p2) Ifi(g(c)}(’(i))wzmﬁ”'}’

QT+ (CI), b,p)

K(z)K'(x) (KK')
:To{x—lxo (gw(:p)—;ﬂ_%K(x)lf{('(x))““'}’
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where 8,9(zo, b; p)+ik (K2 (x)—p®)1/2¢(x0, b; p) = 0 and 19 = 2(K>(z0)—
p2)/ K (z0) K (z0)1(x0, b; p).

In conjunction with the singularity structure, as a final remark, it
would be interesting to study the deeper mathematical connections be-
tween the scattering operator symbols and asymptotics, spectral the-
ory, Sturm-Liouville theory, etc. For example, Sturm-Liouville theory
can relate to the number of poles of the scattering operator symbols;
this theory, indicating that (x,b;p) has zeros only a finite number of
times, implies that if there are an infinite number of poles of the re-
flection/transmission operator symbols, then the limit point should be
either a turning point or a point where (d/dz)K?(z) = 0 under the as-
sumption that there are only finite number of zeros of (d/dz)K?(x) and
finite number of turning points.
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