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Abstract - The magnetic force calculation
methods, the Maxwell’s stress tensor method,
virtual work method, and nodal force method,
are reviewed. The methods are applied to the
magnetic force calculation of 2D linear and
nonlinear problems. As the results, the
convergence of the methods as the number of
elements increases, accuracy of the methods,
and integral path dependence of the methods
are discussed. Finally some recommendations
on the usage of the methods, including the
determination of the integral path. are given.

1. Introduction

In the design of electromagnetic devices the
accurate magnetic field analysis and the precise
force calculation are very important. The finite
element method, nowadays, is being considered
as the most accurate for the precise electro-
magnetic field analysis in both the linear and
nonlinear problems. However, as far as the
force computation is concerned, there is no
definite conclusion as to which method is the
most accurate although several algorithms such
as Amperes force law, the Maxwell’s stress
tensor method(MSTM), the virtual work
method(VWM), and the equivalent source
method are developed and being used(1].

Among the methods, the Amperes force law
and the -equivalent source method are
considered less accurate than the other
‘methods and seldom used except some special
purposes(2). MSTM is one of the most widely
used methods. The method, however, has been
proved to give different results for different
integration paths, and converge very slowly as
the number of elements increases(2,3).

VWM using local Jacobian derivative, on
the other hand, is developed very recently and
is known to be more compatible with the finite
element method because the elements used in
the force calculation are also used in the field
calculation(4}. In the method, however, the
derivation of the formula is quite difficult and
the application to the complex real engineering
problems is also not easy. It is because
distinguishing the deformed elements due to
the virtual displacement of the object is not

easy. This problem becomes more severe for the
3D problems.

The nodal force method(NFM), which is
derived from the Maxwell stress tensor with
the virtual displacement interpolated by shape
function, is very recently developed(5].
According to the reference (5], this method is
reported as accurate as VWM, and easily
applicable to the 2D and 3D problems.
Furthermore, in this method, the distribution
of the local force can be easily computed. In
these reasons, the method seems very
attractive.

In this paper, MSTM, VWM, and NFM are
reviewed, and the three methods are proved
numerically to give essentially same results.
The influence of the integration path on the
computed result is also investigated for MSTM
and VWM. Finally, through the numerical
examples, some recommendations are given on
the usage of the force calculation methods.

2. Force Calculation Methods

2.1 The Maxwell stress tensor method
According to the electromagnetic field theory,
the force densities in conducting material and
the magnetized material are given (Jx B) and
(- H?vu), respectively [(6). Hence, neglecting
the magneto-restriction force, the magnetic
force density, generally, can be represented as
follows:

T= B} wtos M
where the symbols have their usual meanings.

Using the Amperes law and vector identities,
(1) can be manipulated as follows:

F=uv ><7I)><7?——§— H2Op
=v (BB -5 v(zH)
=v T (2)

where T is the Maxwell stress tensor matrix of
which the elements are defined as follows:

Ty=H,B;—6; 0m (3)
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where 3, is the Kronecer's delta function, and
w, is stored magnetic co~energy density.
The global force, hence, exerting to the object

that occupies the volume(v) can be calculated
as follows

F= v - Tao=§ T ds @

where s is an arbitrary closed surface enclosing
the object. In the numerical implementation
with the finite element method, generally, the
integration surface is set in air region. In 2D
application especially, it can be expressed
by(1,3,6]:

Pl (Bl wot)aa (5)

where ? and 7 are the tangential and normal
unit  vectors at  the integration path,
respectively,

2.2 The virtual work method

According to the electromagnetic energy
conversion theory, the force exerted on the
object can be calculated from the variation of
the stored energy with vrespect to the
displacement of the object. The force along q
direction, hence, is represented as follows (4]:

Fe=—tlln

dq I A= constant (6)

where the stored magnetic energy is defined as,
, B
W,,,=fgf H- dBd2 (N

For the simplicity of the mathematical
manipulation, the 2D isotropic magnetic
material surrounded by air will be considered.

Using the first order triangle element in the
finite element analysis, vector potential A can
be interpolated as follows in the element (e):

A¥= 3 N,ALY (8)
mas g g,
where N,, is the shape function defined as

Nm="2-1g(am+bmx+cmy) (m=1jk, (9-a)
Bi=X Y= XY bi=Y i Ve €= 2%, (9-b)
With the help of the above equations, the
magnetic energy in an element (e) per unit
length can be expressed by
?:=_ g:la_]q[_l_{A (2)} T[K(e}]{A (9)}”5(2)‘] (10-2)
K

4/J<e)
f=bbitecic;,  4,7=1,2,3. (10~b)

where |59 is twice of the element area.
The global force exerting on the body along

g direction, using (6) and (10-a), can be
written as

- e a K(’) £
F=- g‘;}ay[{fl”)? o _[3‘1_1{‘4()}
+A4%@ T{K(E)]{A (&)! al§;;)k-l] 11

where M denotes the number of elements, and
¢ is kept constant in an element in the
derivation of (11).

In this method, the virtual displacement is
occurred to all the nodal points on the object,
and the corresponding energy variation in each
element is computed and summed up to give
the global force. If the object is rigid body,
however, the energy variation due to the
virtual displacement of the object occurs at
only the elements that surround the object. In
real implementation, hence, only the nodal
points on the surface of the object are virtually
moved and the corresponding energy variations
are computed for the deformed elements only
and summed up for global force.

2.3 Nodal force method
The Maxwell’s magnetic stress tensor T can
be represented as following:
7‘—={_77f‘ !, T] 4 (12)
The magnetic volume force density, 7 and
surface force density, z can be driven from the

Maxwell’s stress tensor are defined as
follows{5]:
F= 3 v T T (13-a)
=X y.2
o= 2 (Til,=Til) - »n (13-b)

1=x92

where » is the unit normal vector from region
1 to region 2.

For the virual displacement &7 of the
material, the virtual work done by the forces is
expressed as

W= fg’}- 810+ fr'}. &7lar

== [[ T (var)+ Ty (vor )+ TAvardlde  (14)

The virtual displacement of the rigid body
can be interpolated using the nodal shape
function, as shown in Fig.1l, and can be written
as

§T=%N,T" (15)

where N, and 6 I" are the nodal shape function

and the virtual displacement of the n-th nodal
point. Substituting (15) into (14), the virtual
work can be expressed as follows:
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Fig.1 The displacement of a rigid body and nodal
points.

sW=—3 [ (T,- YN, 3+ T, YN,5
+ 7T, -vN,2)de- 871" (16)

Finally the force acting on the n-th nodal point
is given as:

—

F,=- [(T.- vN,3+ T, YN,5+ T,- vN,2)de (17)

where, the volume integration will be performed
only for the elements containing the n-th nodal
point. The global force on the rigid body can be
easily found by simple summation of the nodal
forces at nodes on the body.

3.Numerical Examples

A simple magnetic lifter, shown in Fig. 2. is
taken as a model, and the developed force
calculation methods are applied to compute the
force between the iron core and iron bar. For
the magnetic field analysis, the adaptive mesh
refinement technique, with the local error
estimation using the field continuity condition
at the interface of the elements, is used to
refine the mesh. In order to see the relation
between the integration path and computed
force, the several integration paths are defined:

Path 1:Lines connecting the mid-points of the
triangles surrounding the iron bar,

Path 2: A rectangular box that is 0.001(mm)
apart from the iron bar,

Path 3 A rectangular box that is 0.9(mm) apart
from the iron bar,

Path 4: A rectangular box that is 2.0(mm] apart
from the iron bar,

Path 5: A rectangular box that the upper edge is
5.0(mm] and the other three edges are
10.0{mm]} apart from the iron bar.

At first, the non-linear case is studied, where
the applied current is 34200{AT). In the
magnetic field analysis the Newton-Raphson

%
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Fig.2 2D magnetic lifter.

Fig.3 Distribution of the force densities in
non-linear case.

method is incorporated. Fig.3 shows the
distribution of the force densities on the
magnetic material when the number of elements
is 23,757. 1t is found that the forces are
concentrated on the lower part of the iron
yoke, and the force between the exciting
current and iron yoke is quite big. The relative
positions of the integration paths for the
Maxwells stress tensor method are shown in
Fig. 4. The computed forces using MSTM with
different integration path, VWM, and NFM are
compared in Fig.5. It can be seen, from this
figure, that the MSTM gives the same result
with the VWM and NFM so long as the
integration path is taken as Path 1 as in
Fig.4-(a). It is also found that, for the
accurate computation and fast convergence of
the force, the VWM and NFM are more
recommendable than MSTM and Path 1 should
be taken if the MSTM is used.

When computing the force with VWM, the
deformed elements by the virtual displacement
of the body should be taken, at Ileast
theoretically, as the elements that surround the
body, as shown 1in Fig. 6-(a). In the
computation, however, the deformed elements
are chosen differently for the Path 2~5 as
shown in Fig. 6-(b), and the corresponding
forces are computed using VWM.

The computed forces with different deformed
elements are compared in Fig.7. From the
results, it is found that the different deformed
elements give almost same result so long as the
deformed elements are not too far from the
surface of the object. It is very important
advantage of VWM because the method can be
easily applied to the real complex engineering
model.

V(emem)
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(a) Path 1 (b) Path 4 and 5
Fig.4. The relative positions of the integration
paths for MSTM.
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Fig.5. Convergence of the computed forces as
the number of elements increases(non-linear).

Secondly, the linear case, where the applied
current is 1140(AT) and the relative magnetic
permeability of the iron yoke and bar is 3,000,
is studied. The distribution of the force
densities, which are computed using the NFM,
are shown in Fig.8. It is found that the
distribution of the force densities 1is quite
different from that in non-linear case, and the
force is highly concentrated at the corner of the
iron yoke where the magnetic flux density is
very high. The convergence of the computed
forces is compared in Fig.9. In the nonlinear
case, the three methods give the same result so
long as the Path 1 is used for the MSTM.

4. Conclusins

The equivalence of MSTM, VWM., and NFM
are proved numerically for the linear and
non-linear problems. In the viewpoint of the
precise force computation, the following
conclusions are obtained for 2D problems
through some numerical examples.

(1) The three methods give the exactly same force so
long as the integral path is taken as lines
connecting the mid-points of the triangles
surrounding the object.

(2) The NFM is recommendable for the precise force
computation with finite element field analysis in
linear and non-linear cases because the method
gives as fast convergence as the other methods
and the distribution of the local force, and is
very simple to be implemented.

(3) When VWM is used, the moving surface can be
taken arbitrary without the loss of accuracy so
long as the moving surface is not too far from
the surface of the object.

1007 Xomem) g

EQ 100 Mo
Noder=1306  Elemem 10370

(a) (b)
Fig.6 The distorted elements for the VWM
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Fig.7 Dependence of the force on the moving
surface in VWM.
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Fig.9 Convergence of the forces as the number
of elements increases for linear case
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