• Title/Summary/Keyword: passive control systems

Search Result 463, Processing Time 0.026 seconds

Decentralized Output Feedback Robust Passive Control for Linear Interconnected Uncertain Time-Delay Systems

  • Shim, Duk-Sum
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.140-146
    • /
    • 2002
  • We consider a class of large-scale interconnected time delay systems and investigate a decentralized robust passive control problem. sufficient conditions for unforced interconnected uncertain systems with time delay to be robustly stable with extended strictly passivity is given in terms of algebraic Riccati inequality and linear matrix inequality. The decentralized robust passive control problem for norm-bounded and positive real uncertainty is shown to be converted to extended strictly positive real control problem for a modified system which contains neither time delay nor uncertainty.

A Passive Multiple Trailer System with Off-axle Hitching

  • Lee, Jae-Hyoung;Woojin Chung;Kim, Munsnng;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.289-297
    • /
    • 2004
  • This paper deals with the design and control of passive multiple trailer systems for practical applications. Due to the cost and complexity of the trailer mechanism, passive systems are preferred to active systems in this research. The design and control objective is to minimize the trajectory tracking errors occurring in passive multiple trailers. Three sorts of passive trailer systems, off-hooked, direct-hooked, and three-point, are discussed in this paper. Trajectory tracking performance and stability issues under constant curvature reference trajectories are investigated for these three types. As well, various simulations and experiments have been performed for each type. It is shown that the proposed off-hooked trailer system produces a tracking performance that is superior to the others.

Direct Control of a Passive Haptic Device Based on Passive Force Manipulability Ellipsoid Analysis

  • Changhyun Cho;Kim, Munsang;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.238-246
    • /
    • 2004
  • In displaying a virtual wall using a passive haptic device equipped with passive actuators such as electric brakes, unsmooth motion frequently occurs. This undesirable behavior is attributed to time delay due to slowness in the virtual environment update and force approximation due to the inability of a brake to generate torque in arbitrary directions. In this paper a new control scheme called direct control is proposed to achieve smooth display on the wall-following task with a passive haptic device. In direct control, brakes are controlled so that the normal component of a resultant force at the end-effector vanishes, based on the force analysis at the end-effector of the passive haptic device using the passive FME (Force Manipulability Ellipsoid). Various experiments have been conducted to verify the validity of the direct control scheme with a 2-link passive haptic system.

Sliding Mode Control for a Robot Manipulator with Passive Joints

  • Kim, Won;Shin, Jin-Ho;Lee, Ju-Jang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.78-83
    • /
    • 2002
  • In this paper, we propose a sliding mode controller for a robot manipulator with passive joints. A robot manipulator with passive joints which are not equipped with any actuators is a kind of underactuated system. Underactuated systems have some advantages compared to fully-actuated ones. For example, they weigh less and consume less energy because they have smaller number of components than fully-actuated ones. However the control of an underactuated manipulator is much more difficult than that of fully- actuated robot manipulator. In this paper a complex dynamic model of a manipulator with passive joints is manipulated for sliding mode control. Sliding mode controllers are designed for this complex system and the stability of the controllers is proved mathematically. Finally a simulation for this control system is executed for evaluating the effectiveness of the designed sliding mode controller.

Decentralized Control of Cooperative Mobile Robot Systems Using Passive Velocity Field Control Method (수동 속도장 제어법을 이용한 협조 이동로봇 시스템의 분산제어)

  • 서진호;이권순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.129-138
    • /
    • 2004
  • In this paper, we propose a method to apply a decentralized control algorithm for passive velocity field control using virtual flywheel system to cooperative 3-wheeled mobile robots, and these subsystem are under nonholonomic constraints. The considered robotic systems convey a common rigid object in a horizontal plain. Moreover we will proof the passivity and robustness for cooperative mobile robotic systems with decentralized passive velocity field control. Finally, The effectiveness of proposed control algorithm is examined by numerical simulation for cooperation tasks with 3-wheeled mobile robot systems.

Numerical investigation of an MR damper-based smart passive control system for mitigating vibration of stay cables

  • Kim, In-Ho;Jung, Hyung-Jo;Kim, Jeong-Tae
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.443-458
    • /
    • 2011
  • An extensive numerical investigation on the magnetorheological (MR) damper-based smart passive control system for mitigating vibration of stay cables under wind loads has been conducted. The smart passive system is incorporated with an electromagnetic induction (EMI) device for reducing complexity of the conventional MR damper based semi-active control system by eliminating an external power supply part and a feedback control part (i.e., sensors and controller). In this study, the control performance of the smart passive system has been evaluated by using a cable structure model extracted from a full-scale long stay cable with high tension. Numerical simulation results of the proposed smart damping system are compared with those of the passive and semi-active control systems employing MR dampers. It is demonstrated from the results that the control performance of the smart passive control system is better than those of the passive control cases and comparable to those of the semi-active control systems in the forced vibration analysis as well as the free vibration analysis, even though there is no external power source in the smart passive system.

A new hybrid vibration control methodology using a combination of magnetostrictive and hard damping alloys

  • Buravalla, Vidyashankar R.;Bhattacharya, Bishakh
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.405-422
    • /
    • 2007
  • A new hybrid damping technique for vibration reduction in flexible structures, wherein a combination of layers of hard passive damping alloys and active (smart) magnetostrictive material is used to reduce vibrations, is proposed. While most conventional vibration control treatments are based exclusively on either passive or active based systems, this technique aims to combine the advantages of these systems and simultaneously, to overcome the inherent disadvantages in the individual systems. Two types of combined damping systems are idealized and studied here, viz., the Noninteractive system and the Interactive system. Frequency domain studies are carried out to investigate their performance. Finite element simulations using previously developed smart beam elements are carried out on typical metallic and laminated composite cantilever beams treated with hybrid damping. The influence of various parameters like excitation levels, frequency (mode) and control gain on the damping performance is investigated. It is shown that the proposed system could be used effectively to dampen the structural vibration over a wide frequency range. The interaction between the active and passive damping layers is brought out by a comparative study of the combined systems. Illustrative comparisons with 'only passive' and 'only active' damping schemes are also made. The influence and the mode dependence of control gain in a hybrid system is clearly illustrated. This study also demonstrates the significance and the exploitation of strain dependency of passive damping on the overall damping of the hybrid system. Further, the influence of the depthwise location of damping layers in laminated structures is also investigated.

Performance analysis of vehicle suspension systems with negative stiffness

  • Shi, Xiang;Shi, Wei;Xing, Lanchang
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.141-155
    • /
    • 2019
  • This work evaluates the influence of negative stiffness on the performances of various vehicle suspension systems, and proposes a re-centering negative stiffness device (NSD). The re-centering NSD consists of a passive magnetic negative stiffness spring and a positioning shaft with a re-centering function. The former produces negative stiffness control forces, and the latter prevents the amplification of static spring deflection. The numerical simulations reveal that negative stiffness can improve the ride comfort of a vehicle without affecting its road holding abilities for either passive or semi-active suspension systems. In general, the improvement degree of ride comfort increases as negative stiffness increases. For passive suspension system, negative stiffness brings in negative stiffness feature in the control forces, which is helpful for the ride comfort of a vehicle. For semi-active suspensions, negative stiffness can alleviate the impact of clipped damping in semi-active dampers, and thus the ride comfort of a vehicle can be improved.

An innovative hardware emulated simple passive semi-active controller for vibration control of MR dampers

  • Zhang, Jianqiu;Agrawal, Anil K.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.831-846
    • /
    • 2015
  • Magneto-Rheological (MR) dampers are being used increasingly because of their adaptability to control algorithms and reliability of passive systems. In this paper, an extensive investigation on performance of MR dampers in semi-active and passive modes has been carried out. It is observed that the overall energy dissipation by MR dampers in passive-on modes is higher than that in semi-active modes for most of the competitive semi-active controllers. Based on the energy dissipation pattern, a novel semi-active controller, termed as "Simple Passive Semi-Active Controller", has been proposed for MR dampers. This controller can be emulated by a simple passive hardware proposed in this paper. The proposed concept of controller "hardware emulation" is innovative and can also be implemented for other semi-active devices for control algorithms of certain form. The effectiveness and reliability of the proposed controller has been investigated extensively through numerical simulations. It has been demonstrated that the proposed controller is competitive to or more effective than other widely used / investigated semi-active controllers.

Vibration control laws via shunted piezoelectric transducers: A review

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chen, JinJin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.1-19
    • /
    • 2014
  • Attaching a piezoelectric transducer to a vibrating structure, and shunting it with an electric circuit, gives rise to different passive, semi-passive, and semi-active control techniques. This paper attempts to review the research related to structural vibration control, via passive, semi-passive, and semi-active control methods. First, the existing electromechanical modeling is reviewed, along with the modeling methods. These range from lumped parameters, to distributed parameters modeling of piezostructural systems shunted by electrical networks. Vibration control laws are then discussed, covering passive, semi-passive, and semi-active control techniques, which are classified according to whether external power is supplied to the piezoelectric transducers, or not. Emphasis is placed on recent articles covering semi-passive and semi-active control techniques, based upon switched shunt circuits. This review provides the necessary background material for researchers interested in the growing field of vibration damping and control, via shunted piezostructural systems.