• Title/Summary/Keyword: particulate composite

Search Result 108, Processing Time 0.024 seconds

A Study on Effective Thermal Conductivity of Particulate Reinforced Composite (입자 강화 복합재의 등가 열전도 계수에 대한 연구)

  • Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.133-138
    • /
    • 2006
  • Effective thermal conductivity of particulate reinforced composite has been predicted by Eshelby's equivalent inclusion method modified with Mori-Tanaka's mean field theory. The predicted results are compared with the experimental results from the literature. The model composite is polymer matrix filled with ceramic particles such as silica, alumina, and aluminum nitride. The preliminary examination by Eshelby type model shows that the predicted results are in good agreements with the experimental results for the composite with perfect spherical filler. As the shape of filler deviates from the perfect sphere, the predicted error increases. By using the aspect ratio of the filler deduced from the fixed filler volume fraction of 30%, the predicted results coincide well with the experimental results for filler volume fraction of 40% or less. Beyond this fraction, the predicted error increases rapidly. It can be finally concluded from the study that Eshelby type model can be applied to predict the thermal conductivity of the particulate composite with filler volume fraction less than 40%.

  • PDF

Recycling of Aluminum Alloy from Al-Cu Metal Matrix Composite Reinforced with SiC Particulates

  • Sharma, Ashutosh;Ahn, Byungmin
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.691-695
    • /
    • 2018
  • In this study, we investigate the recycling of aluminum-based metal matrix composites(AMCs) embedded with SiC particulates. The microstructure of the AMCs is characterized by X-ray diffraction and scanning electron microscopy. The possibility of recycling the composite scrap is attempted from the melted alloy and SiC particulates by re-melting, holding and solidification in crucibles. The recovery percentage of the matrix alloy is calculated after a number of holding times, 0, 5, 10, 15, 20, 25 and 30 minutes and for different particulate sizes and weight fractions in the Al matrix. The results show that the recovery percentage of the matrix alloy, as well as the time required for maximum recovery of the matrix, is dependent on the size and weight fraction of SiC particulates. In addition, the percentage recovery increases with particulate size but drops with the particulate fraction in the matrix. The time to reach maximum recovery falls rapidly with an increase in particulate size and fraction.

Preparation of Warm Compacted NbC Reinforced Iron-based Composite and its Tribological Behavior

  • Xiao, Zhiyu;Ngai, Tungwai Leo;Wen, Liping;Li, Yuanyuan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.851-852
    • /
    • 2006
  • The introduction of ceramic particulate into metallic powder will unavoidably lower the compressibility and formability of the mixed powder. In this study, warm compaction, which is a simple and low cost technique to produce high density PM parts, was introduced in preparing composite. The aim of this paper is to prepare the warm compacted NbC particulate reinforced Fe-based composite, then study its tribological behavior and application in the valve-guide cup. A 15 wt.% NbC reinforced iron-based composite was prepared. It possesses a relative density of 98%, a tensile strength of 515 MPa, a hardness of HRC 58 and a remarkable tribological behavior.

  • PDF

Effective Medium Theory for Particulate Composite Materials Carrying Elastic Waves

  • Hyungjune Yim;Lee, Dae-Sun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1E
    • /
    • pp.3-12
    • /
    • 2000
  • In this paper, two major theories of effective medium for composite materials are studied, which provide the average dynamic mechanical properties of particulate composites carrying elastic waves on the basis of the concept of self-consistent scattering of waves. These two theories are also compared in detail with each other to delineate the difference in the underlying ideas and their limitation of applicability. Furthermore, prospective directions for potential improvement of the theories are found. Numerical results for three particulate composites are given and discussed.

  • PDF

A Study on the Improvement of Fatigue Strength in Particulate Reinforced Metal Matrix Composites at Elevated Temperatures (입자강화 금속기 복합재료의 고온 피로강도 향상에 관한 연구)

  • Sin, Hyeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1146-1154
    • /
    • 2000
  • Fatigue strength of NiAl and Ni$_3$Al particulate reinforced aluminum alloy composites fabricated by the diecasting method was examined at room and elevated temperatures. The results were compared wit h that of SiC particulate reinforced one. The particulate reinforced composites showed some improvement in the static and fatigue strength at elevated temperatures when compared with that of Al alloy. The composites reinforced by intermetallic compound particles showed good fatigue strengths at elevated temperatures especially $Ni_3AI_{p}/Al$ alloy composite showed good fatigue limit up to high temperature of 30$0^{\circ}C$. Adopting intermetallic compound particle as a reinforcement phase, it will be possible to develop MMC representing better fatigue property at elevated temperature.

Crack Resistance Behavior Using Digital Image Correlation and Crack Tip Opening Angle on Particulate Reinforced Composite (디지털 화상관련법 및 균열선단열림각도를 이용한 입자강화 복합재료의 균열저항거동)

  • Na, Seong Hyeon;Lee, Jeong Won;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1021-1026
    • /
    • 2016
  • In this study, crack resistance is evaluated by the crack tip opening angle (CTOA) using a wedge splitting test (WST) on a viscoelastic particulate reinforced composite based on an HTPB binder. Generally, CTOA, as a function of crack extension, is used in order to determinate fracture resistance and has a steady state relative angle. Digital image correlation (DIC) is used to measure the crack tip opening displacement (CTOD) and crack extension for the critical crack tip opening angle (CTOAc). In these results, the CTOAc value of a particulate reinforced composite tends to approach a constant angle after a small amount of crack extension. The CTOAc value increases with decreasing temperature, from $50^{\circ}C$ to $-40^{\circ}C$. These CTOAc values may be used to measure fracture mechanics parameters for particulate reinforced composite.

Studies on Preparation of $Ti_3SiC_2$ Particulate Reinforced Cu Matrix Composite by Warm Compaction and its Tribological Behavior

  • Ngai, Tungwai L.;Xiao, Zhiyu;Wu, Yuanbiao;Li, Yuanyuan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.853-854
    • /
    • 2006
  • Warm compaction powder metallurgy was used to produce a $Ti_3SiC_2$ particulate reinforced Cu matrix composite. Fabrication parameters and warm compaction behaviors of Cu powder were studied. Based on the optimized fabrication parameters a Cu-based electrical contact material was prepared. Results showed that in expend of some electrical conductivity, addition of $Ti_3SiC_2$ particulate increased the hardness, wear resistivity and anti-friction ability of the sintered Cu-base material.

  • PDF

Effect of Powder Size on Infiltration Height in Producing MgO Reinforced Al Matrix Composite by Vacuum Infiltration Method

  • Calin, Recep;Citak, Ramazan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1271-1272
    • /
    • 2006
  • The vacuum infiltration method is one of the composite producing methods. There are several parameters in composite production by vacuum infiltration. One of them is particle size of reinforcement in particulate reinforced composites. In this study, MgO powder and Al were used as reinforcement and matrix respectively. MgO powders with different size and amount to give same height were filled in quartz tubes and liquid metal was vacuum infiltrated into the MgO powder under same vacuum condition and for same time. Infiltration height was measured and microstructure and fracture behavior of composite were investigated. It has been found that infiltration height and fracture strength were increased with particulate reinforcement sizes. It has also been determined that molten metal temperature facilitates infiltration.

  • PDF

A micromechanics-based time-domain viscoelastic constitutive model for particulate composites: Theory and experimental validation

  • You, Hangil;Lim, Hyoung Jun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.3
    • /
    • pp.217-242
    • /
    • 2022
  • This paper proposes a novel time-domain homogenization model combining the viscoelastic constitutive law with Eshelby's inclusion theory-based micromechanics model to predict the mechanical behavior of the particle reinforced composite material. The proposed model is intuitive and straightforward capable of predicting composites' viscoelastic behavior in the time domain. The isotropization technique for non-uniform stress-strain fields and incremental Mori-Tanaka schemes for high volume fraction are adopted in this study. Effects of the imperfectly bonded interphase layer on the viscoelastic behavior on the dynamic mechanical behavior are also investigated. The proposed model is verified by the direct numerical simulation and DMA (dynamic mechanical analysis) experimental results. The proposed model is useful for multiscale analysis of viscoelastic composite materials, and it can also be extended to predict the nonlinear viscoelastic response of composite materials.

Assessment of Static Crack Resistance Behavior on Particulate Reinforced Composite for Solid Propellant (고체 추진용 입자강화 복합재의 정적 균열 저항 거동 평가)

  • Seo, Bohwi;Choi, Hoonseok;Kim, Jaehoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.29-34
    • /
    • 2014
  • Particulate reinforced composite is composed of hard particles and polymer matrix. This material has been widely applied for engineering industry such as automobile, construction and aerospace. For the safe application, it is important to assess crack resistance behavior. Especially in aerospace industry, crack could cause significant problem when the material is used for solid rocket fuel. Therefore, it is inevitable to estimate the characteristics of the crack propagation. In this study, crack propagation tests were conducted using particulate reinforced composite under crosshead rate 2.54 mm/min in the range of temperature $-60^{\circ}C$ to $60^{\circ}C$. The strain contour of surface for specimen was generated using digital image correlation method.