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Abstract
In this paper, two major theories of effective medium for composite materials are studied, which provide the average 

dynamic mechanical properties of particulate composites carrying elastic waves on the basis of the concept of self-consistent 
scattering of waves. These two theories are also compared in detail with each other to delineate the difference in the 
underlying ideas and their limitation of applicability. Furthermore, prospective directions for potential improvement of the 
theories are found. Numerical results for three particulate composites are given and discussed.

I ・ Introduction

There may be found a great number of various 
composite materials in engineering usage these days. 
Many of them are subjected to dynamic loading, where the 
composite materials behave dynamically, e.g. they 
undergo phenomena of waves and vibration. In general, 
when materials exhibit dynamic behaviors, their 
mechanical properties deviate from the corresponding 
static values. Therefore, the dynamic material properties 
of composites must be known for accurate analyses of 
problems involving dynamic behaviors.

There exists another obviously important case where the 
dynamic behavior of composite materials must be known: 
namely, ultrasonic nondestructive testing. As the use of 
composite materials in load-bearing applications increases, 
it becomes necessary to inspect the material to warrant its 
structural integrity. Ultrasonic testing is a particularly 
effective method for nondestructive evaluation of 
composite materials. However, the physical phenomena 
occurring when ultrasonic waves propagate in the 
specimen of a composite material are much more 
complicated than in homogeneous materials, due to the 
multiple scattering from the many randomly distributed 
reinforcements. In particular, waves scattered from 
reinforcements are superposed upon the waves scattered 
from the defects to be detected, which makes it difficult to 
extract useful information from the received signal.

Therefore, it is necessary to know a priori the effects of 
the multiple scattering from reinforcements, so that they 
may be taken into account in identifying the characteristics 
related only to the target defects.

Motivated by the practical reasons discussed above, this 
paper is concerned with the theories that model the 
dynamic behavior of composite materials by considering 
wave phenomena occurring therein. Though these theories 
may be applied equally well to both fibrous and particulate 
composites, focus will be on the particulate composite 
materials in this paper, particularly for the numerical 
computation part. When a plane elastic wave is introduced 
into a composite material, there may form a coherent plane 
wave as a combined effect of multiple scattering from the 
randomly distributed reinforcements, under certain 
circumstances. Then, the real and imaginary parts of the 
(generally complex) wavenumber of this coherent wave 
are related to the wavespeed and attenuation, respectively, 
of the so-called effective or average medium. That is, the 
composite material consisting of many randomly 
distributed reinforcements behaves as a homogeneous 
medium from the perspective of this coherent wave. 
Mechanical properties of the effective medium are of 
course related to the complex wavenumber. This paper is 
concerned with the computation of the mechanical 
properties of the effective medium, rather than the 
coherent wavenumbers.

There are various theories to calculate the mechanical 
properties of the effective medium: see, for example, 
References [1-7]. Mai and Knopoff[l] computed the 
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speeds of the statistically averaged waves in composites 
with spherical inclusions, using the Green*s  function 
approach, in the long wavelength limit, Varadan et al. [2] 
used the T-matrix approach for the multiple scattering of 
elastic waves in a fiber composite, and found the elastic 
properties of the corresponding effective medium, again in 
the limit of long wavelength. Similarly, Datta et al.[3] 
calculated the effective elastic properties of composites 
reinforced with transversely isotropic fibers. Also, 
Devaney[4] and Devaney and Levine[5] developed a self- 
consistent scheme for the multiple scattering phenomena, 
from which the elastic constants of the effective medium 
may be computed. Further, an approach combining the 
formulation by Mai and Knopoff[l] with Born 
approximation was developed by Berryman[6] for weak 
scatterer problems. Recently, Kim et al.[7] developed 
another formulation, using the coherent potential 
approximation, for the effective medium properties of 
composites by studying the average displacement field 
expressed in the integral representation. More recently, 
Jeong and Kim[8] provided numerical results, based on 
some of the above theories and some others, in the 
Rayleigh region, and compared them with experimental 
results.

All the approaches mentioned above differ from each 
other to various degrees. Our study in this paper is focused 
on the two approaches in References [4] and [7]. They will 
be referred to as Approach I and Approach II, 
respectively, hereafter. Also, numerical results for various 
particulate composites, as computed by Approach II, are 
presented, and the results are discussed from physical 
perspectives.

H. Theory

Derivation of the two approaches focused upon in this 
paper is shown, along with the final resulting equations for 
the effective medium properties. By comparisons, 
differences in the derivation steps and in the final 
equations are observed, and are discussed from the 
physical perspectives.

2.1. Integral equations for elastic wave scattering
Both approaches start with the following governing 

equation for time-harmonic elastic wave displacement 
field in a homogeneous medium[9].

+"h+y；=O (1) 

where C。蛙 and p denote the stiffness tensor and density 
of the medium, respectively; a) the angular frequency; 
and, fi the body force. If an inhomogeneity (having 
stiffness C扁 and density p') exists in the homogeneous 

medium, it scatteres waves. In Approach I, the Green*s  
tensor g for scattering has been found to be

幻顽 = 一「')一 JG꺼心 - 产) -

{[阿”')編,Q"，，이” + 仃卬(产)知侦，

(2)

where SCijtl = Cijkl - C..u and 8p = pf - p\-Q denotes the 
free-space Green's tensor for the matrix medium; and, Q 
is the volume of the scatterer.

On the other hand, in Approach II, the displacement 
field in the matrix medium has been shown to be[9]

«,(r) = u[ (r) + a)?策 j G,.m(r - r')um(r-)dV 
Cl

+8CjUm\Gi.t(r-Y')ulm(r)dV (3)

where (r)is the i-th component of the incident wave 
displacement, and the two integrals represent the scattered 
wavefield. Recalling the relationship between the 
displacement field and the corresponding Green's 
function, it may be seen that (2) and (3) are equivalent in 
their physical implications.

2.2. Concept of self-consistent scattering
In Approach I, where the effects of multiple scattering 

are considered in a self-consistent manner, momentum 
operators and Dirac's notation often used in quantum 
mechanics are adopted for brevity of mathematical 
expressions. First of all, the scattering equation for the 
Green's tensor in (2) may be rewritten in operator form as 

盆시肅a ⑷

where all hatted letters denote the corresponding abstract 
operators, and is an operator which depends on the 
properties of the matrix and the effective medium. On the 
other hand, note that due to its definition, the free-space 
Green tensor operator G satisfies

代毎=-诚， ⑸

where 代=爲-仲&毎 which is the operator 
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representing wave propagation in the effective medium; I 
is the identity operator; and, 饥 그 T히 a*  is the usual 
momentum operator from quantum mechanics. Now, the 
second term on the right-hand side of (4) may be rewritten 
by use of the concept of the transition operator f. Then, 
taking an ensemble average on both sides of (4) results in 
the following expression for the average Green tensor of 
the scattered wavefield.

(g) = G + G-(TyG (6)

Now, the concept of self-consistency is used: namely, the 
average transition operator must vanish, i.e. (「) -0. As a 

result, (6) becomes 信) = 6. Therefore, if G in (5) is 
found, (g) becomes known.

In contrast, Approach II utilizes the coherent potential 
approximation, depicted in Fig, 1. The main idea of this 
approximation technique is that when an incident plane 
wave propagating in the unknown effective medium 
encounters a representative volume (shown as a circle) of 
the composite, the average scattered wave must vanish. 
This argument is similar to the vanishing of the average 
transition operator in Approach I. From the requirement of 
vanishing average scattered wave, the equations for the 
effective medium properties are derived. Particularly when 
the scatter's size in Fig. 1 becomes sufficiently small, the 
probability for the scatterer to be composed exclusively of 
either of the two constituents is equal to their respective 
volume fraction. If the volume fraction of the j-th 
constituent is denoted by R(丿= 1,2) , and the single 
scattering operator for the scatterer of the j-th constituent 
is denoted by t7 the coherent potential approximation 
may expressed mathematically as

< t>=^ vjtj = 0, (7)

Reinforcements 

Effective medium

where the overbar(_) emphasizes the fact that the 
scattering occurs into the effective medium.

2.3. Equations for effective medium properties
The procedures by which equations for the effective 

medium properties are derived in the two approaches are 
depicted. In Approach I, first of all, the solution of (5) 
must be obtained. By adopting the quasicrystalline 
approximation[ 10], it may be shown that solving (5) is 
equivalent to solving the two following equations for G 
and Q simultaneously.

Q(R) = T(R) + T(R) • & • J y(l R - R，l)0(R”)dW, (8)

[f° + nJQ(R)dV] G = r G = -I, (9)

where f° is an operator defined similarly to with 
all material properties replaced by those of the matrix; 
y(l A - I) is the so-called pair-correlation function for 
the locations of two scatterers; and, n = N/Vdenotes the 
average number of scatterers per unit volume. In the 
original derivation^], instead of the transition operator j 
in (8), its ensemble average over the scatterer's orientation 
is used. Such averaging is omitted here because the 
scatterers in this paper are assumed to be perfectly 
spherical. Now, note that an average plane wave 平 must 
propagate freely in the effective medium, so

Further, assume that the scatterers are perfectly

fw = o. (1。)

randomly distributed, and that the concentration of the 
scatterers is sufficiently low so that the effect of 
y(l R ~ R시) is negligible. Then, substituting obtained 

from (9) into (10), the properties of the effective medium 
may be found. In doing so, the two cases, where the 
average plane wave in (10) is longitudinal and shear, are 
both considered. Utilizing the forward scattering 
theorem[9] results in the equations for the effective 
medium properties,

(A° + 2心p； -co2p° --A, =0, (11)
Pi

卩。房 - 0)2p° - 4兀 2쓰一•爲 • A2 = 0, (12)
Pz

Figure 1. Schematic of coherent potential approximation 
approach.
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where the parameters having the superscript "0" denote 
the properties of the matrix material ; P\ and Pi are the 
wavenumbers of the average longitudinal and shear waves, 
respectively, having amplitudes & and % and, A, and 

A2 are the forward scattering amplitudes in the two 
cases of the average longitudinal and shear waves, 
respectively.

Now, the procedure by which equations for the effective 
medium properties have been derived in Approach II is 
studied. First of all, it is assumed that the incident wave 
that causes wave scattering in (7) and in Fig. 1 is an 
average longitudinal wave propagating in the effective 
medium. Such a plane wave may be expressed as

西=%必蚌1“)

(13)

where u0 and k； are the amplitude vector and the 
wavevector, respectively, of the average longitudinal 
wave. Taking the left and right dot products of (7) by u0 
and using the forward scattering theorem[9] given by

(7) may be rewritten in a convenient form,

(15)

In (14) and (15), f? denotes 나le forward scattering 
amplitude of the longitudinal scattered wave produced by 
the scatterer, made of the ;-th constituent, subjected to a 
longitudinal incident wave given by (13). In general, using 
the scattering equation (3) and the far-field asymptotic 
fonn of the free-space Green tensor G, the form functions 
may be expressed in the integral representation. Such an 
expression for『(灯)in the present case, where the 
incident field in Fig. 1 is given by (13) and the scatterer is 
made of the j-th constituent, may be expressed as

= 슪静习[第宙钢+临臍%思""當广 

요 (16)

where \ is the A：-th component of the unit vector 
r = r/1 r I, and ^rs denotes the strain tensor. Note that 

because both the effective medium and the scatterer are 
homogeneous and isotropic, the stiffness tensor in (16) 
may be expressed in terms of the Lame's constants A,卩，. 
After some algebra, (16) may be rewritten as

以睥就邱收矿V

+ 必%f 소 一 2SjUJEJ: r'W, (17)

where 3pJ = pj -pe,82/ = -尤,5卩，=-"仏 and E 
denote the dilatation and strain tensor, respectively; and : 
denotes the scalar product of second-order tensors. Now, 
substituting (17) into (15), a sufficient condition for (15) 
may be written as the three equations,

£ v枷"疽 J UJ • Ve「'S'dV' = 0, (18)
j n

£讨＜覺"出/'*50/' = 0, (19)
J a

£ 呻 SEJ: We~ik； r'dV, = 0. (20)
j n

In this paper, y=l and j=2 denote the matrix and 
reinforcement, respectively.

2.4. Discussions and comparisons of two 
approaches

Having briefly outlined the two approaches considered 
in this study, they are compared with each other and their 
differences are discussed. The most significant difference 
between Approaches I and II may be seen by comparing 
the fin시 results, (11) and (12), of Approach I with 나le 
final equations, (18) through (20), of Approach II. That is, 
(11) and (12) contain the characteristics of scattering from 
one constituent (e.g. reinforcements) only, whereas (18) 
through (20) have scattering characteristics of both 
scatterers, each made of one of the constituents. For this 
reason, Approach II is said to be symmetrical in the sense 
that the two constituents are treated on the same footing, 
and thus it is appropriate for cases where the two 
constituents are not clearly distinguished as the host or the 
reinforcement. The reason for this difference lies in the 
different underlying concepts used in the derivation. As 
explained above, Approach I adopts the concept of self­
consistency in dealing with the multiple scattering 
phenomena, where the medium of the scatterers is 
designated. On the other hand, Approach II is based upon 
the coherent potential approximation, where the scatterer 
may comprise either of the two media.

Also, note that (18) through (20) are sufficient 
conditions for (15), i.e. there may be many cases where 
(15) holds without satisfying any of (18) through (20). In 
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other words, (18) through (20) constitute an over­
constraint on the effective medium properties. This is 
regarded as a serious point of arguments. Also, note that 
(11) and (12) have been obtained by separately 
considering the two cases of average longitudinal and 
shear waves, whereas (18) through (20) have been 
obtained by considering only one case of average 
longitudinal waves. Therefore, Approach II may be 
supplemented by considering average shear waves. In 
doing so, however, a natural question may arise: that is, 
already having three equations for three properties 
(无* and pe) of the effective medium, more equations 
would mean too many equations. This question may easily 
be answered when the first point in the present paragraph 
is recalled. Since (18) through (20) constitute a sufficient 
condition for (15), (18) through (20) should be replaced by 
new necessary and sufficient conditions for (15).

A similar concern may arise, as to the solution of the 
two equations, (11) and (12), in Approach I. That is, the 
two equations may not be sufficient to find the three 
properties of the effective medium because of the lack of 
equations. However, as Deveney and Levine solved the 
problem with the Rayleigh approximation[5] (when the 
frequency is sufficiently low), or with the Born 
approximation [4] (when the scatterer's properties differ 
only slightly from the matrix's), three equations for the 
three unknowns may be found from the two equations, 
(11) and (12). For example, when the Bom approximation 
holds, (11) and (12) become [4]

[(A° +2^°) + C(5A + 2神p； -a)2[p° + C8p] = 0,(21)

[H° + - <o2[p° + C8p} = 0, (22)

where C드莒K，the volume concentration of the 
scatterers, each having a volume Since the last terms 
of (21) and (22) are common, from the three different 
terms, the well-known rule of mixture follows, i.e. 
Z = A° + C5A, = ju° + Cg Pe = P° + C8p. In 

general, (21) and (22) may be solved for the three effective 
medium properties in a similar manner.

Finally, another difference between the two approaches 
is the capability of Approach I to take into account of the 
pair-correlation between two scatterers, as characterized 
by the Y function in (8), even though it has been 
neglected in the final stage of derivation. The effects of 
such pair-correlation become important as the scatterer 

concentration grows.Thus, in such cases, the potential 
capability to consider it may make a difference. Yet, there 
still is much controversy about the form of the pair­
correlation function, so determination of the function is 
another topic of further research.

DI. Numerical results

In this section, several cases of particulate composites 
are considered, and their effective medium properties are 
computed using Approach IL Assuming that the scatterers 
are of spherical shape with identical size, the three- 
dimensional scattering problem in Fig. 1 with a spherical 
scatterer must be solved. (If fiber composites were 
considered, the problem would have become two- 
dimensional with a cylindrical scatterer.) Since the 
formulation of the problem of elastic wave scattering from 
a sphere is readily available in the literature (see, for 
example, References [7, 11, 12]), the reader is simply 
referred to Reference [13], where the formulation is given 
in detail with the errors detected in Reference [기 

corrected. Once the problem has been formulated, (18) 
through (20) may be expressed in terms of the scattering 
coefficients that can be computed from the formulated 
problem. Further, the volume integral in (18) through (20) 
may be significantly simplified by making use of the 
orthogonality of Legendre functions[12, 14]. For example, 
(18) may be reduced as follows.

j u7 - 恥*初  드 J (w；er + u^e + 加) •

Q Q
f qg + % g + 勺 —-—g" 既사 W 
( 하， 36 rsin0 dtp J

=〕£【弓血伽 + 1)九(林成(中)顼"京셔成即)} 

«=o
+D”的+ l)((2n +1赤坎)弗(中)-灼九2折赤尬)} 

- G {咐，编成胃 (中)九뉘 (时由睥 即)} 

니L n(n +1)们九 时)/*( 中)防,

(23)

where Cn and Dn are the n-th scattering coefficients for 
the longitudinal and shear waves, respectively, transmitted 
into the scatterer; and, " and k； denote the longitudinal 
and shear wavenumbers, respectively, of the J-th 
constituent. The computation of products of two Bessel 
functions in (23) may be computed conveniently by 
utilizing formulae in References [15, 16]. The three 
simultaneous (complex) equations such as (23), reduced
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from (18) through (20), are then solved numerically for the 
three (complex) properties, P°，无 , of the effective 

medium. Therefore, in this study, the Newton-Rhapson,s 
method[17, 18] has been extended to complex problems 
and it is used to solve the equations.

Table 1 lists the constituent properties of the three 
particulate composites considered in this study: lead­
epoxy, alumina-aluminum, and aggregate-mortar, with 
those following the hyphens being the matrix media. The 
first case of lead-epoxy is considered only for the purpose 
of comparison with the results in the literature. Several 
cases with different concentrations of lead particles have 
been considered, and all results have shown agreements

Table 1. Constituent properties of composites considered.

'^\Property

Material
P 

[kg/m3]
A 

[GPa]
卩 

[GPa]

Lead 11,300 39.0 8.40

Epoxy 1,200 4.40 1.60

Alumina 3,700 144 144

Aluminum 2,600 41.0 25.0

Aggregate 2,770 19.2 22.5

Mortar 2,380 7.72 10.7

(e) (f)

Figure 2. Effective medium properties of lead-epoxy with 10% volumetric concentration of lead particles versus normalized wavenumber ka\ 
(a) real, and (b) imaginary parts of norm이ized effective density; (c) real, and (d) imaginary parts of normalized effective Lame 
constant 人;and (e) real, and (f) imaginary parts of nonnalized effective Lame constant 卩.
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(b)

(c) (d)

Figure 3. Wavespeeds and attenuations of effective medium for lead-epoxy with 10% v이umetric concentration of lead particles versus 
normalized wavenumber ka ; (a) longitudinal wavespeed, (b) shear wavespeed, (c) longitudinal wave attenuation, and (d) shear 

wave attenuation.

with Reference [7]. Fig. 2 show the computed effective 
medium properties, in the order of real and imaginary 
parts of pL 无，心 as functions of the normalized 
wavenumber ka (k meaning the longitudinal wavenumber 
in the epoxy matrix, and a the radius of the lead particle). 
All results in Fig. 2 are normalized by the value of the 
corresponding property of the epoxy matrix. It should be 
noted from Fig. 2 that the effective medium properties 
show noticeable variations with some peaks, which were 
explained by the argument of scatterer's resonant 
behaviors in Reference [7]. It is also noteworthy that in the 
limit of ka —> 0, the real parts of all properties in Fig. 2 
approach the values given by the rule of mixtures. Fig. 3 
shows the corresponding wavespeeds ( cP-> cs for 
longitudinal and shear waves, respectively) and 
attenuations (% % for longitudinal and shear waves) of 
the effective medium, as computed from the results in Fig.
2. The peaks and valleys in the wavespeeds and 
attenuations shown in Fig. 3 are supposed to be related to 
the resonant behavior of the reinforcements, as they are 
computed from the material properties which exhibit such 
variations in Fig. 2 attributable to the same physical 

effects.
Numerical results for the alumina-aluminum composite 

(with 20% volumetric concentration of alumina particles) 
are shown in Fig. 4, in a manner similar to Fig. 2. It may 
be observed easily that the variations of the curves in Fig. 
4 are remarkably smoother than those in Fig. 2, and also 
that the ranges of their variations are much smaller, even 
though the volumetric concentration of scatterers has 
doubled. This is because the difference in the acoustic 
impedance, Pc, between the two constituents in the case 
of alumina-aluminum is much smaller than that in the case 
of lead-epoxy. That is, the alumina particles act as much 
weaker scatterers in aluminum than the lead particles in 
epoxy, producing much less effects of multiple scattering. 
This phenomenon of less effects of multiple scattering due 
to weak scatterers is much more remarkable in the final 
case of aggregate-mortar, whose numerical results are 
similarly shown in Fig. 5. It may be seen that the 
variations of effective medium properties in Fig. 5 are 
much less and smoother than Fig. 4, even though the 
volumetric concentration of scatterers has increased 
further. This is again because of the even less difference in
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0.02

D.OQ

-0.0J

-0.04

.0.06

-Q.Q«

, 0.1。

-0.12

-04 4

-o.ie

•0.18
0.0

(e) (f)

Figure 4. Effective medium properties of alumina-alununuin with 20% volumetric concentration of alumina particles versus normalized 
wavenumber ka ; (a) real, and (b) imaginary parts of normalized effective density; (c) real, and (d) imaginary parts of normalized 

effective Lame constant 人；and (e) real, and (f) imaginary parts of normalized effective Lame constant g •

the acoustic impendance between the two constituents.

IV - Conclusions

Two major theories of effective medium for randomly 
inhomogeneous composites carrying elastic waves ha기e 
been studied in detail, and compared with each other. It 
has been shown that the two theories are derived on the 
common basis of the self-consistent scattering concept. 
Yet, several differences have been found between their 
final equations, due to the different manners in which the 

concept is utilized in the derivation of the theories. By 
careful comparisons of the two theories, prospective ways 
to improve them have been found and proposed. (Such 
potential improvements are being attempted.) One way of 
the potential improvements is to consider the incidence of 
a plane shear wave in addition to the longitudinal wave 
incidence. Also, it has been noted that when the scatterer 
concentration becomes high, the interMition between 
scatterers will be more important, and it must be 
represented by the pair-correlation function.

In order to illustrate how the effective medium
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Fig니re 5. Effective medium properties of aggregate-mortar with 30% volumetric concentration of aggregates versus normalized 
wavenumber ka ; (a) real, and (b) imaginary parts of normalized effective density; (c) real, and (d) imaginary parts of normalized 
effective Lame constant 人；and (e) real, and (f) imaginary parts of normalized effective Lame constant 卩.

properties may be found, three particulate composites have 
been considered. The equations that the effective medium 
properties must satisfy have been solved numerically by 
the Newton-Rhapson method extended for complex 
variables. In the case of lead-epoxy composite considered 
repeatedly in previous studies, the numerical results have 
agreed with those in the literature. The other two cases 
considered in the study are alumina-aluminum composite 
and aggregate-mortar concrete. Numerical results for the 
effective medium properties in these two composites have 
shown much less variations, as the frequency varies, than 

those in the case of lead-epoxy composite. This may be 
explained by the relatively less difference in the acoustic 
impedance between the two constituents in the two latter 
cases.

As a result of this study, understanding of the effective 
medium theory for elastic waves has been enhanced, and 
prospective directions for future improvement of the 
theory have been found. Once such improvements have 
been completed, the theories will provide a reliable tool 
for accurate prediction of the dynamic behavior of 
engineering composite materials, and will also be useful 
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for their ultrasonic nondestructive testing. Further, a 
theory for fiber composites may be developed, in a similar 
manner.
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