Browse > Article
http://dx.doi.org/10.12989/aas.2022.9.3.217

A micromechanics-based time-domain viscoelastic constitutive model for particulate composites: Theory and experimental validation  

You, Hangil (Department of Aerospace Engineering, Seoul National University)
Lim, Hyoung Jun (Department of Aerospace Engineering, Seoul National University)
Yun, Gun Jin (Department of Aerospace Engineering, Seoul National University)
Publication Information
Advances in aircraft and spacecraft science / v.9, no.3, 2022 , pp. 217-242 More about this Journal
Abstract
This paper proposes a novel time-domain homogenization model combining the viscoelastic constitutive law with Eshelby's inclusion theory-based micromechanics model to predict the mechanical behavior of the particle reinforced composite material. The proposed model is intuitive and straightforward capable of predicting composites' viscoelastic behavior in the time domain. The isotropization technique for non-uniform stress-strain fields and incremental Mori-Tanaka schemes for high volume fraction are adopted in this study. Effects of the imperfectly bonded interphase layer on the viscoelastic behavior on the dynamic mechanical behavior are also investigated. The proposed model is verified by the direct numerical simulation and DMA (dynamic mechanical analysis) experimental results. The proposed model is useful for multiscale analysis of viscoelastic composite materials, and it can also be extended to predict the nonlinear viscoelastic response of composite materials.
Keywords
Eshelby inclusion theory; homogenization; micromechanics; particulate composite; viscoelastic material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brenner, R., Masson, R., Castelnau, O. and Zaoui, A. (2002), "A "quasi-elastic" affine formulation for the homogenised behaviour of nonlinear viscoelastic polycrystals and composites", Eur. J. Mech.-A/Solid., 21(6), 943-960. https://doi.org/10.1016/S0997-7538(02)01247-0.   DOI
2 Babaei, B., Davarian, A., Pryse, K.M., Elson, E.L. and Genin, G.M. (2016), "Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra", J. Mech. Behav. Biomed. Mater., 55, 32-41. https://doi.org/10.1016/j.jmbbm.2015.10.008.   DOI
3 Berbenni, S., Dinzart, F. and Sabar, H. (2015), "A new internal variables homogenization scheme for linear viscoelastic materials based on an exact Eshelby interaction law", Mech. Mater., 81, 110-124. https://doi.org/10.1016/j.mechmat.2014.11.003.   DOI
4 Brinson, L.C. and Lin, W. (1998), "Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites", Compos. Struct., 41(3-4), 353-367. https://doi.org/10.1016/S0263-8223(98)00019-1.   DOI
5 Chen, Y., Yang, P., Zhou, Y., Guo, Z., Dong, L. and Busso, E.P. (2020), "A micromechanics-based constitutive model for linear viscoelastic particle-reinforced composites", Mech. Mater., 140, 103228. https://doi.org/10.1016/j.mechmat.2019.103228.   DOI
6 DeBotton, G. and Tevet-Deree, L. (2004), "The response of a fiber-reinforced composite with a viscoelastic matrix phase", J. Compos. Mater., 38(14), 1255-1277. https://doi.org/10.1177/0021998304042732.   DOI
7 Christensen, R.M. (1969), "Viscoelastic properties of heterogeneous media", J. Mech. Phys. Solid., 17(1), 23-41. https://doi.org/10.1016/0022-5096(69)90011-8.   DOI
8 Dederichs, P.H. and Zeller, R. (1973), "Variational treatment of the elastic constants of disordered materials", Zeitschrift fur Physik A Hadrons and Nuclei, 259(2), 103-116. https://doi.org/10.1007/BF01392841.   DOI
9 Dunn, M.L. (1995), "Viscoelastic damping of particle and fiber reinforced composite materials", J. Acoust. Soc. Am., 98(6), 3360-3374. https://doi.org/10.1121/1.413823.   DOI
10 Li, K., Gao, X.L. and Roy, A.K. (2006), "Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites", Mech. Adv. Mater. Struct., 13(4), 317-328. https://doi.org/10.1080/15376490600583931.   DOI
11 Hashin, Z. (1965), "Viscoelastic behavior of heterogeneous media", J. Appl. Mech., 32(3), 630-636. https://doi.org/10.1115/1.3627270.   DOI
12 Jung, J., Park, C., Ryu, M.S. and Yun, G.J. (2021), "A molecular structure-informed viscoelastic constitutive model for natural rubber materials", Funct. Compos. Struct., 3(4), 045002. https://doi.org/10.1088/2631-6331/ac34fc.   DOI
13 Kitey, R. and Tippur, H. (2005), "Role of particle size and filler-matrix adhesion on dynamic fracture of glassfilled epoxy. I. Macromeasurements", Acta Materialia, 53(4), 1153-1165. https://doi.org/10.1016/j.actamat.2004.11.012.   DOI
14 Laws, N. and McLaughlin, R. (1978), "Self-consistent estimates for the viscoelastic creep compliances of composite materials", Proc. Roy. Soc. London Ser. A, 359(1697), 251-273. https://doi.org/10.1098/rspa.1978.0041.   DOI
15 Muller, M. (2017), "Mechanical properties of resin reinforced with glass beads", Agron. Res., 15(S1), 1107-1118. https://doi.org/10.1177/096739111802600105.   DOI
16 Pan, Z., Huang, R. and Liu, Z. (2019), "Prediction of the thermomechanical behavior of particle reinforced shape memory polymers", Polym. Compos., 40(1), 353-363. https://doi.org/10.1002/pc.24658.   DOI
17 Digimat, A. (2011), "Software for the linear and nonlinear multi-scale modeling of heterogeneous materials", e-Xstream Engineering, Louvain-la-Neuve, Belgium.
18 Doghri, I. and Ouaar, A. (2003), "Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms", Int. J. Solid. Struct., 40(7), 1681-1712. https://doi.org/10.1016/S0020-7683(03)00013-1.   DOI
19 Dutra, V.F.P., Maghous, S., Campos, A. and Pacheco, A.R. (2010), "A micromechanical approach to elastic and viscoelastic properties of fiber reinforced concrete", Cement Concrete Res., 40(3), 460-472. https://doi.org/10.1016/j.cemconres.2009.10.018.   DOI
20 Paipetis, S.A. and Grootenhuis, P. (1979), "The dynamic properties of particle reinforced viscoelastic composites", Fib. Sci. Technol., 12(5), 377-393. https://doi.org/10.1016/0015-0568(79)90004-6.   DOI
21 Le, Q., Meftah, F., He, Q.C.and Le Pape, Y. (2007), "Creep and relaxation functions of a heterogeneous viscoelastic porous medium using the Mori-Tanaka homogenization scheme and a discrete microscopic retardation spectrum", Mech. Time-Depend. Mater., 11(3-4), 309-331. https://doi.org/10.1007/S11043-008-9051-Z.   DOI
22 Li, J. and Weng, G.J. (1994), "Strain-rate sensitivity, relaxation behavior, and complex moduli of a class of isotropic viscoelastic composites", J. Eng. Mater. Technol., 116(4), 495-504. https://doi.org/10.1115/1.2904319.   DOI
23 Liu, Z. (2017), "Reduced-order homogenization of heterogeneous material systems: from viscoelasticity to nonlinear elasto-plastic softening material", Northwestern University.
24 Molinari, A., Ahzi, S. and Kouddane, R. (1997), "On the self-consistent modeling of elastic-plastic behavior of polycrystals", Mech. Mater., 26(1), 43-62. https://doi.org/10.1016/S0167-6636(97)00017-3.   DOI
25 Hashin, Z. (1970), "Complex moduli of viscoelastic composites-I. General theory and application to particulate composites", Int. J. Solid. Struct., 6(5), 539-552. https://doi.org/10.1016/0020-7683(70)90029-6.   DOI
26 Escarpini Filho, R.D.S. and Marques, S.P.C. (2016), "A model for homogenization of linear viscoelastic periodic composite materials with imperfect interface", Lat. Am. J. Solid. Struct., 13(14), 2706-2735. https://doi.org/10.1590/1679-78252749.   DOI
27 Fisher, F.T. and Brinson, L.C. (2001), "Viscoelastic interphases in polymer-matrix composites: theoretical models and finite-element analysis", Compos. Sci. Technol., 61(5), 731-748. https://doi.org/10.1016/S0266-3538(01)00002-1.   DOI
28 Gillani, A. (2018), "Development of material model subroutimes for linear and non linear response of elastomers", University of Western Ontario, Ontario.
29 Khan, M.M.K., Liang, R. Gupta, R. and Agarwal, S. (2005), "Rheological and mechanical properties of ABS/PC blends", Korea-Australia Rheology J., 17(1), 1-7.
30 Zhao, W., Liu, L., Leng, J. and Liu, Y. (2019), "Thermo-mechanical behavior prediction of particulate reinforced shape memory polymer composite", Compos. Part B: Eng., 179, 107455. https://doi.org/10.1016/j.compositesb.2019.107455.   DOI
31 Sevostianov, I., Levin, V. and Radi, E. (2016), "Effective viscoelastic properties of short-fiber reinforced composites", Int. J. Eng. Sci., 100, 61-73. https://doi.org/10.1016/j.ijengsci.2015.10.008.   DOI
32 Qu, J. (1993), "The effect of slightly weakened interfaces on the overall elastic properties of composite materials", Mech. Mater., 14(4), 269-281. https://doi.org/10.1016/0167-6636(93)90082-3.   DOI
33 Ricaud, J.M. and Masson, R. (2009), "Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours", Int. J. Solid. Struct., 46(7), 1599-1606. https://doi.org/10.1016/j.ijsolstr.2008.12.007.   DOI
34 Rodriguez-Ramos, R., Otero, J. A., Cruz-Gonzalez, O. L., Guinovart-Diaz, R., Bravo-Castillero, J., Sabina, F. J., ... & Sevostianov, I. (2020), "Computation of the relaxation effective moduli for fibrous viscoelastic composites using the asymptotic homogenization method", Int. J. Solid. Struct., 190, 281-290. https://doi.org/10.1016/j.ijsolstr.2019.11.014.   DOI
35 Vieville, P., Bonnet, A.S. and Lipinski, P. (2006), "Modelling effective properties of composite materials using the inclusion concept. General considerations", Arch. Mech., 58(3), 207-239.
36 Fassi-Fehri, O. (1985), "Le probleme de la paire d'inclusions plastiques et heterogenes dans une matrice anisotrope: application a l'etude du comportement des materiaux composites et de la plasticite", Universite Paul Verlaine-Metz.
37 Kim, Y., Jung, J., Lee, S., Doghri, I. and Ryu, S. (2022), "Adaptive affine homogenization method for Viscohyperelastic composites with imperfect interface", Appl. Math. Model., 107, 72-84. https://doi.org/10.1016/j.apm.2022.02.007.   DOI
38 Vieville, P., Bonnet, A. and Lipinski, P. (2006), "Modelling effective properties of composite materials using the inclusion concept. General considerations", Arch. Mech., 58(3), 207-239.
39 Czarnota, C., Kowalczyk-Gajewska, K., Salahouelhadj, A., Martiny, M. and Mercier, S. (2015), "Modeling of the cyclic behavior of elastic-viscoplastic composites by the additive tangent Mori-Tanaka approach and validation by finite element calculations", Int. J. Solid. Struct., 56-57, 96-117. https://doi.org/10.1016/j.ijsolstr.2014.12.002.   DOI
40 Hu, A., Li, X., Ajdari, A., Jiang, B., Burkhart, C., Chen, W. and Brinson, L.C. (2018), "Computational analysis of particle reinforced viscoelastic polymer nanocomposites-statistical study of representative volume element", J. Mech. Phys. Solid., 114, 55-74. https://doi.org/10.1016/j.jmps.2018.02.013.   DOI
41 Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlin. Dyn., 90(1), 479-492. https://doi.org/10.1007/s11071-017-3676-x.   DOI
42 Lahellec, N. and Suquet, P. (2007), "Effective behavior of linear viscoelastic composites: A time-integration approach", Int. J. Solid. Struct., 44(2), 507-529. https://doi.org/10.1016/j.ijsolstr.2006.04.038.   DOI
43 Shokrieh, M.M., Ghajar, R. and Shajari, A.R. (2016), "The effect of time-dependent slightly weakened interface on the viscoelastic properties of CNT/polymer nanocomposites", Compos. Struct., 146, 122-131. https://doi.org/10.1016/j.compstruct.2016.03.022.   DOI
44 Tchalla, A., Azoti, W.L., Koutsawa, Y., Makradi, A., Belouettar, S. and Zahrouni, H. (2015), "Incremental mean-fields micromechanics scheme for non-linear response of ductile damaged composite materials", Compos. Part B: Eng., 69, 169-180. https://doi.org/10.1016/j.compositesb.2014.08.055.   DOI
45 Zhu, X.Y., Wang, X. and Yu, Y. (2014), "Micromechanical creep models for asphalt-based multi-phase particle-reinforced composites with viscoelastic imperfect interface", Int. J. Eng. Sci., 76, 34-46. https://doi.org/10.1016/j.ijengsci.2013.11.011.   DOI
46 Azoti, W.L., Bonfoh, N., Koutsawa, Y., Belouettar, S. and Lipinski, P. (2013), "Influence of auxeticity of reinforcements on the overall properties of viscoelastic composite materials", Mech. Mater., 61, 28-38. https://doi.org/10.1016/j.mechmat.2013.02.002.   DOI
47 Patnaik, S.S., Swain, A. and Roy, T. (2020), "Creep compliance and micromechanics of multi-walled carbon nanotubes based hybrid composites", Compos. Mater. Eng., 2(2), 141. https://doi.org/10.12989/cme.2020.2.2.141.   DOI