DOI QR코드

DOI QR Code

Assessment of Static Crack Resistance Behavior on Particulate Reinforced Composite for Solid Propellant

고체 추진용 입자강화 복합재의 정적 균열 저항 거동 평가

  • Seo, Bohwi (Department of Mechanical Design Engineering, Graduate School, Chungnam National University) ;
  • Choi, Hoonseok (Department of Mechanical Design Engineering, Graduate School, Chungnam National University) ;
  • Kim, Jaehoon (Department of Mechanical Design Engineering, Chungnam National University)
  • Received : 2014.06.03
  • Accepted : 2014.09.12
  • Published : 2014.10.01

Abstract

Particulate reinforced composite is composed of hard particles and polymer matrix. This material has been widely applied for engineering industry such as automobile, construction and aerospace. For the safe application, it is important to assess crack resistance behavior. Especially in aerospace industry, crack could cause significant problem when the material is used for solid rocket fuel. Therefore, it is inevitable to estimate the characteristics of the crack propagation. In this study, crack propagation tests were conducted using particulate reinforced composite under crosshead rate 2.54 mm/min in the range of temperature $-60^{\circ}C$ to $60^{\circ}C$. The strain contour of surface for specimen was generated using digital image correlation method.

입자강화 복합재는 단단한 입자들과 고분자 매트릭스로 구성되어 있다. 현재 이 재료는 자동차, 건설 및 항공우주 산업까지 다양한 분야에서 사용되고 있다. 이 재료의 안전한 사용을 위해서 균열 저항 거동을 평가하는 것은 중요한 일이다. 특히 항공우주 산업에서 이 재료가 고체 로켓 연료로 사용될 때 균열은 심각한 문제를 야기할 수도 있다. 그렇기 때문에 균열 전파의 특성을 평가하는 것은 불가피한 일이다. 본 연구에서는 입자강화 복합재를 사용하여 균열 전파 시험을 수행하였다. 또한 디지털 이미지 상관법을 사용하여 시편 표면의 변형률 분포도를 나타내었다.

Keywords

References

  1. Kwon, Y.W. and Liu, C.T., "Damage Growth in a Particulate Composite under a High Strain Rate Loading," Mechanics Research Communications, Vol. 25, No. 3, pp. 329-336, 1998. https://doi.org/10.1016/S0093-6413(98)00045-7
  2. Kakavas, P.A., "Mechanical Properties of Propellant Composite Materials Reinforced with Ammonium Perchlorate Particles," International Journal of Solids and Structures, Vol. 51, No. 10, pp. 2019-2026, 2013.
  3. Liu, C.T., "Crack Growth Behavior in a Solid Propellant," Engineering Fracture Mechanics, Vol. 56, No. 1, pp. 127-135, 1997. https://doi.org/10.1016/S0013-7944(96)00107-5
  4. Smith, C.W., Wang, L., Mouille, H. and Liu, C.T., "Near-Tip Behavior of Particulate Composite Material Containing Cracks at Ambient and Elevated Temperatures," American Society for Testing and Materials, ASTM STP 1189, pp. 775-787, 1993.
  5. Kim, I.L., Huh, Y.H. and Lee, G.C., "Detectability of Pore Defect in Wind Turbine Blade Composites Using Image Corelation Technique," Transaction of KSME A, Vol. 37, No. 10, pp. 1201-1206, 2013.
  6. Robert, N., "An Extension of the Time-Temperature Superposition Principle to Non-linear Viscoelastic Solids," International Journal of Solids and Structures, Vol. 43, Issue 17, pp. 5295-5306, 2006. https://doi.org/10.1016/j.ijsolstr.2005.09.009
  7. Anderson, T.L., Fracture Mechanics, 3rd ed., CRC Taylor & Francis Group, New York, N.Y., U.S.A., 2005.
  8. Bohn, M.A. and Elsner, P., "Aging of the Binders GAP-N100 and HTPB-IPDI Investigated by Torsion-DMA," Propellants, Explosives, Pyrotechnics, Vol. 24, No. 3, pp. 199-205, 1999. https://doi.org/10.1002/(SICI)1521-4087(199906)24:03<199::AID-PREP199>3.0.CO;2-L