• 제목/요약/키워드: partial feedback linearization

검색결과 14건 처리시간 0.023초

부분 피드백 선형화를 이용한 One-wheel Unicycle Robot의 자세 제어 (The Posture Control of One-wheel Unicyle Robot Using Partial Feedback Linearization)

  • 김진석;조영진;김영탁
    • 한국정밀공학회지
    • /
    • 제24권4호
    • /
    • pp.68-75
    • /
    • 2007
  • In this study, the ultimate goal is to acquire stability when turning around efficiently by using the controller which is applied partial feedback linearization of One-wheel Unicycle Robot. When moving around, linear controller could result in unstable factor according to widening operation range. So in order to reduce instability, 1 have developed Non-linear Controller using Partial Feedback Linearization. Compared with linear controller, Non-linear Controller guarantees the superiority of Regulating Control and Tracking Control in direct and also revolution motion of Robot. I'm sure of the Non-linear controller performance through many experiments.

A Feedback Linearization Control of Container Cranes: Varying Rope Length

  • Park, Hahn;Chwa, Dong-Kyoung;Hong, Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권4호
    • /
    • pp.379-387
    • /
    • 2007
  • In this paper, a nonlinear anti-sway controller for container cranes with load hoisting is investigated. The considered container crane involves a planar motion in conjunction with a hoisting motion. The control inputs are two (trolley and hoisting forces), whereas the variables to be controlled are three (trolley position, hoisting rope length, and sway angle). A novel feedback linearization control law provides a simultaneous trolley-position regulation, sway suppression, and load hoisting control. The performance of the closed loop system is shown to be satisfactory in the presence of disturbances at the payload and rope length variations. The advantage of the proposed control law lies in the full incorporation of the nonlinear dynamics by partial feedback linearization. The uniform asymptotic stability of the closed-loop system is assured irrespective of variations of the rope length. Simulation and experimental results are compared and discussed.

Angle and Position Control of Inverted Pendulum on a Cart Using Partial Feedback Linearization

  • Yeom, Dong-Hae;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1382-1386
    • /
    • 2003
  • In this paper, we propose a controller for the position of a cart and the angle of a pendulum. To achieve both purposes simultaneously, we divide the system into the dominant subsystem and the dominated one after partial feedback linearization. The proposed controller is composed of a nonlinear controller stabilizing the dominant subsystem and a linear quadratic controller. Using the proposed controller, the controllable region is increased by the nonlinear control part and the control input minimized by the linear control part (LQR).

  • PDF

자코비안 및 2단 선형화 기법과 부분 상태궤환을 이용한 볼-빔 시스템의 스위칭 제어 (Switching Control of Ball and Beam System using Partial State Feedback: Jacobian and Two-Step Linearization Methods)

  • 이경태;최호림
    • 전기학회논문지
    • /
    • 제66권5호
    • /
    • pp.819-832
    • /
    • 2017
  • We propose a new switching control scheme for a ball and beam system by utilizing two linearization methods. First, the Jacobian linearization is applied and state observer is developed afterward. Then, motivated [6], the approximate input-output linearization is carried out, and after that, the Jacobian linearization is applied along with the design of state observer. Since the second approach requires two linearizations, it is called a two-step linearization method. The state observer is needed for the estimation of the velocities of ball and motor movement. Since the Jacobian linearization based controller tends to provide faster response at the initial time, and after that, the two-step linearization based controller tends to provide better response in terms of output overshoot and convergence to the origin, it is natural to give a switching control scheme to provide the best overall control response. The validity of our control scheme is shown in both simulation and experimental results.

비선형 추가입력을 이용한 도립 진자의 부분 궤환 선형화 제어기 설계 (A partial feedback linearization control of inverted pendulum by using nonlinear additional input)

  • 김용준;염동회;최진영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.58-62
    • /
    • 2002
  • This paper proposes a new nonlinear controller to swing-up an inverted pendulum system mounted on a car. This controller considers not only the pendulum but also the displacement of the cart. A single-input multi-output system is considered to control the inverted pendulum by using partial feedback linearization and nonlinear additional input. The asymptotic stability of the system is shown by using Lyapunov function. The simulation results show effectiveness of the proposed controller.

  • PDF

컨테이너 기중기의 제어 : 수정된 시간최적주행과 비선형 잔류흔들림 제어 (Container Crane Control: Modified Time-Optimal Traveling Followed by Nonlinear Residual Sway Control)

  • 홍금식
    • 제어로봇시스템학회논문지
    • /
    • 제5권5호
    • /
    • pp.630-639
    • /
    • 1999
  • To achieve fast loading and unloading of containers from a container ship, quick suppression of the remaining sway motion of the container at the end of each trolley stroke is crucial. Due to the pendulum motion of the container and disturbances like sind, residual sway always exists at the end of trolley movement. In this paper, the sway-control problem of a container crane is investigated. A two-stage control is proposed. The first stage is a time optimal controlfor the purpose of fast trolley traveling. The second stage is a nonlinear control for the quick suppression of residual sway, which starts right after the first stage while lowering the container. The nonlinear control is investigated in the perspective of controlling an underatuated mechanical system, which combines partial feedback linearization to account for the known nonlinearities as much as possible, and variable structure control to account for the unmodeled dynamics and disturbances. Simulation and experimental results are provided.

  • PDF

분절적이고 유연성있는 우주 구조물의 동역학적 해석 및 자세제어 (Nonlinear Synamics and Attitude Control of Articulated and Flexible Spacecraft)

  • 백명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.937-942
    • /
    • 1993
  • This paper extends the authors' prior work on the regulation of flexible space structures via partial feedback linearization (PFL) methods to articulated systems. Recursive relations introduced by Jain and Rodriguez are central to the efficient formulation of models via Poincare's form of Lagrange's equations. Such models provide for easy construction of feedback linearizing control laws. Adaptation is shown to be an effective way of reducing sensitivity to uncertain parameters. An application to a flexible platform with mobile remote manipulator system is highlighted.

  • PDF

ε조절 요소를 가진 부분 상태 궤환 제어기를 이용한 자기부상 시스템의 제어 (Control of Electromagnetic Levitation System using ε-scaling Partial State Feedback Controller)

  • 박규만;최호림
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1572-1576
    • /
    • 2011
  • The electromagnetic levitation(EMS) system is one of the well-known nonlinear system because of its nonlinearity and several control techniques have been proposed. We propose an ${\epsilon}$-scaling partial feedback controller for the ball position control of the EMS system. The key feature of our proposed controller is the use of the scaling factor ${\epsilon}$ which provides a function of controller gain tuning along with robustness. In this paper, we show the stability analysis of our proposed controller and the convergence analysis of the state observer in terms of ${\epsilon}$-scaling factor. In addition, the experimental results show the validity of the proposed controller and improved control performance over the conventional PID controller.

수중 운동체의 운동 특성을 고려한 입/출력 제어기 구성에 관한 고찰 (A Study on an Input-Output Controller Based on the Time-Scale Properties of an Underwater Vehicle Dynamics)

  • 조경남;서동철;최항순
    • 대한조선학회논문집
    • /
    • 제45권5호
    • /
    • pp.469-476
    • /
    • 2008
  • In this paper, it is shown that an input-output (I/O) feedback linearized controller can be designed rationally by utilizing the time-scale properties of heave and pitch for an underwater vehicle. It is assumed that the dynamics of the vehicle is restricted to the vertical plane. An output-feedback control is designed, which stabilizes steady cruising paths. It is shown that the vehicle dynamics with acceleration as output becomes minimum phase. The dynamics can be transformed into a reduced system through a kind of partial linearization and singular perturbation technique. The reduced system is not only minimum phase but also exactly I/O linearizable via feedback. The I/O dynamic characteristics of the heave and pitch modes can be made linear and decoupled. Furthermore it becomes independent of cruising condition such as vehicle velocity. This study may help for designing autopilot systems for underwater vehicles.

Backstepping and Partial Asymptotic Stabilization: Applications to Partial Attitude Control

  • Jammazi, Chaker
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.859-872
    • /
    • 2008
  • In this paper, the problem of partial asymptotic stabilization of nonlinear control cascaded systems with integrators is considered. Unfortunately, many controllable control systems present an anomaly, which is the non complete stabilization via continuous pure-state feedback. This is due to Brockett necessary condition. In order to cope with this difficulty we propose in this work the partial asymptotic stabilization. For a given motion of a dynamical system, say x(t,$x_0,t_0$)=(y(t,$y_0,t_0$),z(t,$z_0,t_0$)), the partial stabilization is the qualitative behavior of the y-component of the motion(i.e., the asymptotic stabilization of the motion with respect to y) and the z-component converges, relative to the initial vector x($t_0$)=$x_0$=($y_0,z_0$). In this work we present new results for the adding integrators for partial asymptotic stabilization. Two applications are given to illustrate our theoretical result. The first problem treated is the partial attitude control of the rigid spacecraft with two controls. The second problem treated is the partial orientation of the underactuated ship.