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Abstract

This paper extends the authors’ prior work on the regulation
of flexible space structures via partial feedback linearization
(PFL) methods to articulated systems. Recursive relations
introduced by Jain and Rodriguez are central to the efficient
formulation of models via Poincaré’s form of Lagrange’s
equations. Such models provide for easy construction of
feedback linearizing control laws. Adaptation is shown to be an
effective way of reducing sensitivity to uncertain parameters.
An application to a flexible platform with mobile remote
manipulator system is highlighted. .

1 Introduction

Our goal is to demonstrate the application of recently
developed innovations for modeling and control of articulated
systems to a spacecraft configuration representative of Space
Station Freedom with a Mobile Remote Manipulator System
(SSF/MRMS). The problem considered is the attitude regulation
of ths space station while the MRMS undergoes arbitrary
prescribed maneuvers. The issue of attitude control for such a
configuration has received attention in the literature, most
notably in the papers of Modi and his coworkers [9] and Wie et
al [14], in which linear controllers are applied and various
stability problems are noted. Such systems are inherently
nonlinear and this raises questions both with ‘respect to
modeling, especially when flexibility is present, and with respect
to control system design.

The methods considered herein address the essential
nonlinearity of these systems directly. A unified approach to
modeling and nonlinear control system design is employed. The
space station attitude control issues addressed herein are related
to the attitude control problems defined by Mah et al {9] and Wie
et al [14] except that we focus on the short time scale problem
(time scale of minutes) associated with MRMS motion whereas
in the aforementioned works MRMS induced disturbances are
considered but primarily in terms of their affect on long term
behavior (time scale of orbits).

As a matter of fact, we show that the stabilization issues are
far more subtle and critical than suggested in either [9] or [14].
The nonlinear inertial cross-couplings, especially when platform
flexibility is considered, severely limits the achievable
performance with linear regulators. Thus, we consider control
system design for decoupling and stabilization with respect to
MRMS motion. Because the associated dynamics are nonlinear
in an essential way, we consider nonlinear control design using
partial feedback linearization. This method effectively cancels
certain nonlinearities and, hence, there arise important
robustness issues. As a result adaptation is considered to be an
important adjunct to this class of controllers. Since the control
problem of interest herein evolves on a short time scale, we do
not include environment (orbital frequency) disturbance torques
in our analysis.

** Drexel University, U.S.A.

2 Modeling of Articulated Spacecraft

In the following paragraphs we summarize the necessary
concepts and explain how they are integrated into the Lagrangian
framework [7,12]). The key issue is the formulation of the
kinetic energy function and we focus on that construction.

We adopt the convention, by which any vector ac R3 is
converted into a skew-symmetric matrix 3(a):

0 -a3 az
d(a) := [ a 0 -a J (2.1)
az ap 0
just as commonly done for angular velocity. Rodriguez et al
{7,12] define the spatial velocity at point C of any body-fixed
reference frame with origin at point C as V; := [w,v.] where v
is the velocity of point C and ® is the angular velocity of the
body. Let O be another point in the same body and let reo denote

the location of C in the body frame with origin at O. Then the
spatial velocity at point C is related to that at O by the relation

Ve = #reo)Vo (2.2)

I 0
Hreo) ::-.[ ; ] and its adjoint ¢*(r¢,) ;=[ ; T;"’ ] [(23)

Consider a serial chain composed of K+1 rigid bodies
connected by joints as illustrated in Figure 1. The bodies are
numbered O through K, with 0 denoting the base or reference
body, which may represent any convenient inertial reference
frame. The ki joint connects body k-1 at the point Cyx.; with
body k at the point Ox.

Let a reference frame &k, with origin at Ok, be so oriented
that its z-axis passes through Cx in the undeformed
configuration. We will use a coordinate specific notation in

.which vectors represented in F1 (or its tangent space) will be
“identified with a superscript “i”. Coordinate free relations carry

no superscript. The k'b joint has ny, 1<ng<6 degrees of freedom
which can be characterized by ny quasi-velocities B(k) and a

joint map matrix H(k)e R6*nk so that V. -V =H(k)B(k).
ok k.|

Rodriguez and his coworkers establish the coordinate free
recursive velocity relation

Vik) = §reolk-1))V(k-1) + H(k)P(k) (2.4)

or in coordinate specific notation
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Vi(k) = §(Fico(k-1))Vi(k-1) + Hi(k)Pi(k) (2.5)
Let us assume that H(k) and (k) are specified in the frame ¥k
and V(k-1) has been computed in the frame ¥ k-1, Then it is
convenient to compute V(k) in the ki frame

V(k) = diag(L.1 xLi-1 OS] (k-1)VEI (k-1) +

H(k) (k) (2.6)

o fointK

N

kth body

.w.

Figure 1. A serial chain composed of K+1 rigid bodies numbered 0
through K and K joints numbered 1 through K. On an arbitrary kib link the
inboard and outboard joint hinge points are designated Oy and Cy. The bod
fixed reference frame & K has its origin at Oy. :

If VO(0) is given, then equation (2.6) allows us to compute
recursively, for k=1,...K, the linear velocity of the origin of ¥k
and the angular velocity of ¥ X, both represented in the

coordinates of ¥k, In what follows we take VO(0)=0. Abusing
notation somewhat, it is convenient to define -

Wkk-1) = diag(Les el 1 O (k-1)  (2.7)
so that (2.6) can be written

Vh(k) = ¢(k.k-1)VE-1(k-1) + HYKk)P*K), k =1, ... , K,
Vv0(0)=0 (2.8

It is necessary to define a spatial inertia tensor as well.
Consider the kth rigid link and let Icg(k) denote the inertia tensor
about the center of gravity in coordinates X, m(k) denote the
mass, and a(k) denote the position vector from the center of
gravity to an arbitrary point Q. The spatial inertia about the
center of gravity, Mcs, and about O, M, are

I 0 )
M= F ] (2.90)

1, ma
Mo(k) = ¢*(a)McePla) =|: ] (2.9b)

-ma ml

where L, is the inertia tensor about O.

The spatial velocity and spatial inertia matrix and, hence, the
kinetic energy function for the entire chain can now be
conveniently constructed. Let us define the chain spatial velocity
and joint psuedo-velocity

V= [VH(1), V(K B o= [B)..BK)] (2.10)

so that we can write

V=olp, (2.11)
where
! o .0 Hi)y o0 ... 0
¢(2.,1) l - ? e (? H('Z) % o‘
- ¢(K,1) §Kz2) ... I 0 0 .. H(K)

W(ij) o= @(ii-1)..¢(j+1)), i=2,..K and j=1,. K-1
The kinetic energy function for the chain consisting of links 1
through K is
K.E.chain = % p'M.p (2.12)

whexé the chain inertia matrix is
I := H*P*MPH, M ;= diag(M,(1),..Mo(K)) (2.13)

Remarks:

(1) Finite element reduction: One approach to finite element
reduction is based on collocation by splines. Our
implementation of this method is described in [2]. It is simple
and convenient for the class of models of interest herein.

(2) Poincaré’s Equations: The above definitions and

constructions provide the kinetic energy function in the form

9 @p) = p*M.(Q)p, i.e., in terms of quasi-velociety p [1,4,10].
Hence, we have the form:

M(q)p + Tlgpp + Flg)=Qp (2.14)
where
_ [&mp) wfamp) Y .S i
Tlqp) = [—;q— V]u+2[—a—q V]p +j=21, pXU' M

g = v'(q)%%ﬂ. 0 = Viq)Q

Notice that Qp denotes the generalized forces represented in the
p-coordinate frame whereas Q denotes the generalized forces in
the §-coordinate frame (aligned with q). Qp is actually more
convenient because the quasi-velocities are usually represented
in appropriate body frames.

(3) Taylor Linearization: A straight forward computation shows
that the Tay!lor linearized dynamics are

g=V(O)p (2.15a)
; IF
M(0)p + T0,0)p + g (3= 40, (2.15b)

3 Nonlinear Attitude Control via PFL

The approach to attitude control design considered herein
derives from a now well established theoretical basis for control
design by feedback linearization [6]. In recent work, including
{2,3], we have tailored this technique to take advantage of the
special structure of Lagrangian dynamics either in the form of
classical Lagrange’s equations or Poincaré’s equations.

3.1 Partial Feedback Linearizing Control
The spacecraft models formulated above are of the from:
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q4=Vigp (3.1a)
MA(q.0)p + Tlqpt)p + Flqt) =Gt (3.1b)
The class of attitude control problems we invesigate is best

characterized by partitioning the coordinate vector, and
correspondingly the quasi-velocity vector, into two parts

N

where & represents the controlled body attitude parameters and ©

the corresponding body angular velocity, whereas u,v represent
the remaining coordinates and velocities, respectively. Then in
partitioned form, the equations are:

E=Ndo (3.3a)

= X&u)v (3.3b)
Mu® +Nv+Fg=Ggut (3.3¢)
NTo+Myw+Fy=Gyt (3.3d)

Our goal is to regulate the outputs y = &. The concept of
partial feedback linearization (PFL) is a general approach to the
design of nonlinear control systems for a general class of
systems with smooth nonlinearities [6]. Attitude control of
spacecraft using feedback linearization was first used by Dwyer
[5]. A PFL compensation for the system (3.3) is a nonlinear
feedback law of the form

= Eouve) + BEouvia (3.4)

which provides a closed loop attitude response in the linear,
decoupled form

(=a (3.5)

Specific conditions for the existence and construction of such
controllers are given in Isidori [6]. Herein we describe the
construction of PFL controllers for spacecraft modeled by
Poincaré’s equations.

The main constructive result is summarized in the following
proposition:

Proposition 3.1: The PFL control for regulation of the

outputs y = & for the system defined by (3.3) takes the form

of (3.4) with

o P 1 -1 ,3rm

d=[Gw-NMva] {Fw-NM’VFVr[NMVNT-Mm]I" —Tw)

(3.6)
B = (G- NMIG -1 Mo-NMINT T

proofl: We prove the proposition by direct construction, in two
steps. First, we use linearizing feedback to reduce (3.3¢) to the

form & = f which we then reduce to (3.5) by a second
linearizing feedback. The composition of these to control laws

gives the desired result. Equation (3.3d) can be solved for v:
v=-MINTo-M]F, + M]Gyt
which allows it elimination from (3.3c):
[Mo-NMINTI&) + Fo- NMIFy = (G- NMJG I

Now we choose the feedback control law:
1= [Gp- NM‘V’GVJJ{F,,, SNMIFy 4 (M- NM‘ij]ﬁ}

which yields:
o=p

Now, differentiation of (3.3a) provides:

& =22% + N =4Enoo+ NYP
Choose, the control law:
p=rigfa-Lenye}
to obtain: .
t-a

and the desired composite linearizing control law is:
=(GarNM! ij-l{Fm-NM'j FotMaNM NP -%r{l’rm ]}

which is the stated result. §

Remarks:

(1) The linearizing control law is local if the parameterization of
the angular configuration is local. However, there is some
flexibility here because one may choose alternate
parameterizations (e.g. Gibbs or Euler parameters), as
appropriate to the problem. In either case, I" has known singular
points which limit the range of linearizability.

(2) In the specific problem of interest herein we have Gn, = X3
and Gy = 0, so that (3.6) simplifies somewhat to: '

o = (Fo-NMFy+ [NMINT - Mw]I‘Ia roj (3.7a)

B = [Mo-NMNT T (3.7b)

(3) The invertibility of My, is assured because it is an inertia
matrix for a physical subsystem which is consequently a positive

definite matrix.
B:=[ ,03 ] (3.80)

(4) Equation (3.5) may be rewritten
% = Az + Ba, A: [0’3
we may easily choose a stabilizing control for (3.5)

a=Kpf+ K=Kz (3.8b)
3.2 Adaptive PFL Control
Because feedback linearization is a model based approach to
control system design, it is necessary to anticipate some
sensitivity to model uncertainty. In the present case, it is
reasonable to assume that the kinematics are precisely known but
that the dynamics are not. Thus, we consider the situation
where the model contains uncertain parametérs, denoted ¥,
which belong to a bounded set ¥. Equations (3.3), may be
rewritten with these parameters explicitly shown

M) + NIV + F()p= Gyt (3.9a)
N(OJTo + MUV + FAD) = Gyt (3.9b)

Because of its physical meaning, the invertibility of My(3) is
preserved for all values of 9 €F. Consequently, a feedback
linearizing control exists for all parameter values. Indeed, the
control (3.4) as constructed via Proposition 4.1 is a parameter
dependent control, which we rewrite in the form

) = HgEouve) + ByEouv)a  (3.10)

The idea is to implement (3.9) with 3 replaced by an estimate 3.

When the estimated control 1(3) is applied, the system is not
exactly feedback linearized and a simple computation shows that
(3.5) is replaced by

E=a+ AD9.Ewuv.) (3.11)

The following proposition provides a parameter adaptive
feedback linearizing control law.
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Proposition 3.2: Consider the system defined by
(3.3a&b) and (3.9) with control 1(3) where () is given by

(3.10) and a by (3.8b). Suppose that the residual A defined
in (3.11) has the form

DL wuv,t) = V(EuvH(0-D) (3.12)

Then an asymptotically stable controller is achieved with the
parameter estimator

3 = QVY(E wu,v,1)BPz (3.13)
where P is a symmetric, positive definite solution of
(A+BK)'P + P(A+BK) = -I (3:14)
and Q is any symmetric, positive definite marix. /

. proof: Various forms of this result are well known, e.g. [13].

4 Summary of Simulation Results

In the following paragraphs we describe simulation results
which compare linear and nonlinear (PFL) controllers for

attitude control of a prototype space station. Prior to
consideration of ﬂexlble platform studies were conducted with a
rigid platform.

4.1 System Conliguration

The space station with MRMS is idealized to be composed of
four articulated elements: the space station main body (body 1),
the MRMS base (body 2), the upper (inner) MRMS arm (body
3), and the lower (outer) MRMS arm (body 4). It is asumed that
the MRMS base, body 2, can move along a fixed path on the
space station, body 1, while body 3 is joined to body 2 and
body 4 to body 3 via joints with up to three rotational degrees of
freedom. The setup is illustrated in figure 2. We consider the
case where the MRMS joints are each resticted to one degree of
freedom: joint 3 admits only rotations about the z-axis in the &3

frame and joint 4 about the x-axis in the F4 frame.

Flexible Platform

-
Track of Base Flexible Upper A
Flexible Lower Arm ¥

Payload

Figure 2. The system considered is composed of & flexible platform, a
mobile base, and the flexible upper and lower arms.

The platform is treated as a flexible beam for which a model
is developed in accordance with the finite element method
described in [5], using collocation by splines as applied to a
Timoshenko formulation of beam dynamics. Even with only
two elements, the resultant system is excessively stiff. Thus,
we reduce the system to retain 4 flexure degrees of freedom (8
modes) by retaining the so-called long wavelength dynamics, so
that angular deformation coordinates are eliminated. Of these, 4
modes are near the control bandwidth (natural frequencies of
about 3 rad/s) and the others are outside the bandwidth
(approximately 10 rad/s). The result is 13 degrees of freedom
with configuration variables:

- Re R3, the location of point O} on body 1 relative to inertial
space.

- L1€SO(3), the relative angular orientation of X! with respect
to inertial space.

- flie R, i=1,..,N(=2) platform deformation coordinates

- Le R, the location of the MRMS base along undeformed track
in the frame 1.

- y32€ R, the relative angular orientation of I3 with respect to
¥2

- $a3€ R, the relative angular orientation of &4 with respect to
¥F3,

The joint quasi-velocities are B(1)=(w1,v1) the linear velocity vy
and the angular velocity @; of 1, the linear velocity B(2)=v2;
for joint 2, and the relative angular velocities B(3)= w32 and

B(4)=w43 for joints 3 and 4.
We assume that the beam is a uniform, square boxbeam with

: outside dimension of 5 m. A material dissipation model of the

type described in [3] is assumed. In addition, we assume some
form of active or passive vibration suppression provides
additional damping. Even so, the dominant modes of the
structure are very lightly damped as will be seen in the
simulation results.

4.2 System Equations

The dynamical equations of motion for the composite system
including the space station with MRMS have been derived in
terms of Poincaré’s equations and take the form

& gy o0 0 000 o
k 0 Li&y) 0 000 Vi
n - 0 0 lixg 0 0 0 v
Pl o 0 0 100 vo, | (419
Va2 o o0 o0 o010 || w2
o3 0 0 0 001 435
w, v, 0 |
_[&mp) ]D 1[3(771p) ]’
m [ v lpsd v m
"o 2| PH oo w, o0 p
0 0 0 J
0s 0 0 05 0 o
|0 Bs 0 p-| 0 Ks 0 |g=0, (4.0b)
0 0 03 0 0 03

In this study we prescribe the MRMS motion and determine
the corresponding SSF response. The MRMS motion is defined
by prescribing the MRMS acceleration and computing the
resultant motion using the kinematics (4.1a). Thus, we have

g’ 100 V2z
;,,32 =010 @322 (4.2a)
43 00 1L oy
V2 az;
@32; | =| asz (4.2b)
043x a43x

In all of the subsequent simulations we use the above MRMS
motion model with the accelerations a;,232z,243x prescribed as
constants.

4.3 Simulation Results

Simulation studies were conducted for both rigid and flexible
platform models using linear, PFL and adaptive PFL control
laws. The linear controls were obtained by applying the PFL
construction to the linearized model, i.e., they are standard linear
decoupling controls. Thus, allowing meaningful comparison of
the linear and PFL controls. All simulation results will be
presented in a similar fashion as two groups of curve: 1) a
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group of four sets of curves illustrating the MRMS motion and
the important principle reference frame coordinates and/or
velocities; and 2) a group of four sets of curves illustrating the
platform flexure dynamics.

Table 1

Open and Closed Loop Eigenvalues
Open Loop Nomlnal Closed | Detuned Closed

Loop Loop

(k) (k/8)

] 0 0

0 0 0
0 0 o

0 0 ]

0 0 0

0 0 0
0 -0.1763 + 3.3205i | -0.1763 + 3.3205i
] -0.1763 - 3.3205i -0.1763 - 3.3205i
0 -0.1763 + 3.3205i | -0.1763 + 3.3205i
0 -0.1763 - 3.3205i -0.1763 - 3.3205i
0 -0.1364 + 1.6505i | -0.1364 + 1.6505i
0 -0.1364 - 1.6505i 0.1364 - 1.6505i
-10.4212 +10.5963i| -0.1364 + 1.6505i | -0.1364 + 1.6505i
-10.4212 -10.5963i | -0.1364 - 1.6505i -0.1364 - 1.6505i
-10.8762 +10.5876i| -0.2000 + 0.2040i | -0.0250 + 0.0979i
-10.8762 -10.5876i -0.2000 - 0.2040i -0.0250 - 0.0979i
-0.2053 + 3.3267i | -0.2000 + 0.2040i | -0.0250 + 0.0979i
-0.2053 - 3.3267i -0.2000 - 0.2040i -0.0250 - 0.0979i
-0.2053 +3.3290i } -0.2000 + 0.2040i | -0.0250 + 0.0979i
-0.2053 - 3.3290i -0.2000 - 0.2040i -0.0250 - 0.0979i

Stabilization with linear feedback

The linear attitude regulator was designed as a decoupling
controller so that meaningful comparisons can be made with the
PFL designs. Table 1 lists the open and closed loop eigenvalues
for several different feedback gain values. The open loop set
consists of 12 zero eigenvalues corresponding to the rigid body
dynamics and an additional 8 corresponding to the platform
flexure dynamics. The second column lists the eigenvalues
resulting from a design intended to achieve the same attitude
response as had been achieved in a study of the rigid body case.
Notice that the first 14 eigenvalues correspond to the “zero
dynamics” and remain fixed as the attitude gain is “detuned” in
columns three and four. The zero dynamics modes include the 3
rigid body translation modes and 4 cantilevered beam modes of
the platform. Although the nominal closed loop linear system is
stable, application of the linear regulator to the nonlinear
simulation with .1 rad error in each Euler angle yields a
divergent trajectory. This is due to destabilizing inertial
crosscoupling between the flexible and rigid body dynamics.
Detuning of the closed loop appeared appropriate in order to
reduce slewing rates and hence platform flexure, Moreover, it is
clear that MRMS motion and attitude regulation performance will
not in practice approach the levels demanded herein. For
example, we impose an MRMS translation of 18m in 60 sec,
whereas, Wie et al [25] impose a translation of Sm in 300 sec.

Nevertheless, the detuned regulators still produce divergent
trajectories, although they are somewhat less dramatic. The
trajectories corresponding to the last column, i.e., the least
aggressive design are also divergent. Reduction of the initial
attitude errors to .01 rad, however, provides convergent
trajectories. We can conclude that the anticipated stable linear
behavior is indeed observed in very small signal excursions.
The significance of the nonlinear interactions which arise
through the inertial couplings is quite striking. It is anticipated
that further detuning would lead to a larger domain of attraction
for the stable equilibrium point, although we have not confirmed
this. Even so0, it is clear that the achievable performance with
linear regulators is severely limited.

Decoupling and Stabilization via PFL

We first consider attitude regulation with an MRMS
maneuver combined with initial attitude errors and with perfect

knowledge of all parameters. The PFL control results are
illustrated in Figure 3.

Parameter uncertainty and adaptive PFL

We begin by illustrating the effect of a 5% stiffness
uncertainty on the performance of the decoupling and stabilizing
PFL controller. These results are shown in Figure 4. Note that
regulation is seriously degraded even with this rather minimal
uncertainy. However, this sensitivity is consistent with our
prior observations about the linear regulator and in fact, it is
likely that sensitivity would be substantially reduced by detuning
of the stabilizer and reduction of the rate of MRMS motion.

Figure § illustrates the adaptive PFL with MRMS motion
and 5% - 10% stiffness uncertainty. Somewhat less satisfactory
results have been achieved with 15% uncertainty. However,
20% uncertainty results in serious degradation of performance.

5§ “Conclusions

This paper summarizes results of a study of the application
of partial feedback linearization methods to the attitude control of
an articulated spacecraft representative of the Space Station
Freedom with a Mobile Remote Manipulator System. Computer
studies contrast linear state feedback attitude stabilizers with PFL
based attitude stabilizers. The results presented herein confirm
previous observations that MRMS motion can significantly
degrade and even destabilize attitude regulation when linear
controllers are applied to this highly nonlinear dynamical
system. Our results show that in the flexible case the linear
regulator must be significantly detuned in order to achieve stable
responses. As a matter of fact, even with detuning, the attitude
errors must be very small in order to observe the behavior

- predicted by linear theory. Parameter uncertainty is not

tolerable. Although the studies conducted to date are far from
exhausting, it is clear that PFL design is promising. It is shown
that the PFL controller performs quite well with perfect
knowledge (no parameter uncertainty) both with respect to
decoupling and stabilization. However, performance
deteriorates rapidly with even small parametric uncertainties.
Adaptive PFL is shown to restore the excellent PFL performance
with uncentainties of 10%. Controller detuning will certainly
improve robustness and studies which address the tradeoff
between performance and sensitivity would be required in any
given design situation.
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Figure 3. The effectiveness of combined PFL decoupling and
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Figure 4. Notice the severe degradation of performance which
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Figure 5. Adaptive PFL with 5% uncertainty.
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