• Title/Summary/Keyword: paranorm

Search Result 8, Processing Time 0.016 seconds

ON VECTOR VALUED DIFFERENCE SEQUENCE SPACES

  • Manoj Kumar;Ritu;Sandeep Gupta
    • Korean Journal of Mathematics
    • /
    • v.32 no.3
    • /
    • pp.439-451
    • /
    • 2024
  • In the present paper, using the notion of difference sequence spaces, we introduce new kind of Cesàro summable difference sequence spaces of vector valued sequences with the aid of paranorm and modulus function. In addition, we extend the notion of statistical convergence to introduce a new sequence space SC1(∆, q) which coincides with C11(X, ∆, φ, λ, q) (one of the above defined Cesàro summable difference sequence spaces) under the restriction of bounded modulus function.

Duality of Paranormed Spaces of Matrices Defining Linear Operators from 𝑙p into 𝑙q

  • Kamonrat Kamjornkittikoon
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.2
    • /
    • pp.235-250
    • /
    • 2023
  • Let 1 ≤ p, q < ∞ be fixed, and let R = [rjk] be an infinite scalar matrix such that 1 ≤ rjk < ∞ and supj,k rjk < ∞. Let 𝓑(𝑙p, 𝑙q) be the set of all bounded linear operator from 𝑙p into 𝑙q. For a fixed Banach algebra 𝐁 with identity, we define a new vector space SRp,q(𝐁) of infinite matrices over 𝐁 and a paranorm G on SRp,q(𝐁) as follows: let $$S^R_{p,q}({\mathbf{B}})=\{A:A^{[R]}{\in}{\mathcal{B}}(l_p,l_q)\}$$ and $G(A)={\parallel}A^{[R]}{\parallel}^{\frac{1}{M}}_{p,q}$, where $A^{[R]}=[{\parallel}a_{jk}{\parallel}^{r_{jk}}]$ and M = max{1, supj,k rjk}. The existance of SRp,q(𝐁) equipped with the paranorm G(·) including its completeness are studied. We also provide characterizations of β -dual of the paranormed space.

SOME SEQUENCE SPACES OVER n-NORMED SPACES DEFINED BY FRACTIONAL DIFFERENCE OPERATOR AND MUSIELAK-ORLICZ FUNCTION

  • Mursaleen, M.;Sharma, Sunil K.;Qamaruddin, Qamaruddin
    • Korean Journal of Mathematics
    • /
    • v.29 no.2
    • /
    • pp.211-225
    • /
    • 2021
  • In the present paper we introduce some sequence spaces over n-normed spaces defined by fractional difference operator and Musielak-Orlicz function 𝓜 = (𝕱i). We also study some topological properties and prove some inclusion relations between these spaces.

ON PARANORMED TYPE p-ABSOLUTELY SUMMABLE UNCERTAIN SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

  • Nath, Pankaj Kumar;Tripathy, Binod Chandra
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.121-134
    • /
    • 2021
  • In this paper we introduce the notion of paranormed p-absolutely convergent and paranormed Cesro summable sequences of complex uncertain variables with respect to measure, mean, distribution etc. defined by on Orlicz function. We have established some relationships among these notions as well as with other classes of complex uncertain variables.

On Some New Paranormed Difference Sequence Spaces Defined by Orlicz Functions

  • Tripathy, Binod Chandra;Dutta, Hemen
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.1
    • /
    • pp.59-69
    • /
    • 2010
  • The main aim of this article is to introduce a new class of sequence spaces using the concept of n-norm and to investigate these spaces for some linear topological structures as well as examine these spaces with respect to derived (n-1)-norm. We use an Orlicz function, a bounded sequence of positive real numbers and some difference operators to construct these spaces so that they become more generalized and some other spaces can be derived under special cases. These investigations will enhance the acceptability of the notion of n-norm by giving a way to construct different sequence spaces with elements in n-normed spaces.

Some Difference Paranormed Sequence Spaces over n-normed Spaces Defined by a Musielak-Orlicz Function

  • Raj, Kuldip;Sharma, Sunil K.;Gupta, Amit
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.1
    • /
    • pp.73-86
    • /
    • 2014
  • In the present paper we introduce difference paranormed sequence spaces $c_0(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$, $c(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$ and $l_{\infty}(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$ defined by a Musielak-Orlicz function $\mathcal{M}$ = $(M_k)$ over n-normed spaces. We also study some topological properties and some inclusion relations between these spaces.

ORLICZ SEQUENCE SPACES OF FOUR DIMENSIONAL REGULAR MATRIX AND THEIR CLOSED IDEAL

  • Raj, Kuldip;Pandoh, Suruchi;Choudhary, Anu
    • Honam Mathematical Journal
    • /
    • v.41 no.4
    • /
    • pp.725-744
    • /
    • 2019
  • In this paper we introduce some new types of double difference sequence spaces defined by a new definition of convergence of double sequences and a double series with the help of sequence of Orlicz functions and a four dimensional bounded regular matrices A = (artkl). We also make an effort to study some topological properties and inclusion relations between these sequence spaces. Finally, we compute the closed ideals in the space 𝑙2.