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ON PARANORMED TYPE p-ABSOLUTELY SUMMABLE

UNCERTAIN SEQUENCE SPACES DEFINED BY

ORLICZ FUNCTIONS

Pankaj Kumar Nath and Binod Chandra Tripathy

Abstract. In this paper we introduce the notion of paranormed
p-absolutely convergent and paranormed Cesŕo summable sequences of

complex uncertain variables with respect to measure, mean, distribution

etc. defined by on Orlicz function. We have established some relationships
among these notions as well as with other classes of complex uncertain

variables.

1. Introduction

Uncertainty is an extremely important feature of the real world. How do we
understand uncertainty? How do we model uncertainty? In order to answer
those questions, the notion of uncertainty theory was introduced by Liu [13].
Nowadays uncertainty theory has become a branch of mathematics for mod-
elling human uncertainty. The uncertain theory has been studied from different
aspects by Chen [2], Liu ([12,14]), You [30] and others.

2. Preliminaries

In this section, we procure some fundamental concepts and theorems in
uncertainty theory are introduced, which will be used throughout the paper.

Definition 2.1 ([13]). Let L be a σ-algebra on a nonempty set Γ. A set
function M is called an uncertain measure if it satisfies the following axioms:

Axiom 1. (Normality Axiom) M{Γ} = 1;
Axiom 2. (Duality Axiom) M{Λ}+ M{Λc} = 1 for any Λ ∈ L;
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Axiom 3. (Subadditivity Axiom) For every countable sequence of {λj} ∈ L,
we have

M


∞⋃
j=1

λj

 ≤
∞∑
j=1

M{λj}.

The triplet (Γ,L,M) is called an uncertainty space, and each element Λ in L is
called an event. In order to obtain an uncertain measure of compound event,
a product uncertain measure is define by Liu in [16] as follows:

Axiom 4. (Product Axiom) Let (Γk,Lk,Mk) be an uncertainty space for
k = 1, 2, 3, . . .. The product uncertain measure M is an measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk},

where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . . , respectively.

Definition 2.2 ([13]). An uncertain variable ξ is a measurable function from
an uncertainty space (Γ,L,M) to the set of real numbers, i.e., for any Borel set
B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ : ξ(γ) ∈ B}

is an event.

Definition 2.3 ([13]). The uncertainty distribution Φ of an uncertain variable
ξ is defined by

Φ(x) = M{ξ ≤ x} for all x ∈ R.

Definition 2.4 ([15]). The uncertain variables ξ1, ξ2, . . . , ξn are said to be
independent if

M


n⋂
j=1

(ξj ∈ Bj)

 =

n∧
j=1

M{ξj ∈ Bj}

for any Borel sets B1, B2, . . . , Bn of real numbers.

Definition 2.5 ([13]). Let ξ be an uncertain variable. The expected value of
ξ is defined by

E[ξ] =

∫ +∞

0

M{ξ ≥ r}dr −
∫ 0

−∞
M{ξ ≤ r}dr,

provided that at least one of the above two integrals is finite.

Considering the importance of the role of convergence of sequence in mathe-
matics, some concepts of convergence for uncertain sequences were introduced
by B. Liu (See for instance [15]) as follows:
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Definition 2.6. The uncertain sequence {ξn} is said to be convergent almost
surely (a.s.) to ξ if there exists an event Λ with M{Λ} = 1 such that

lim
n→∞

|ξn(γ)− ξ(γ)| = 0

for every γ ∈ Λ. In that case we write ξn → ξ, a.s., as n→∞.

Definition 2.7. The uncertain sequence {ξn} is said to be convergent in mea-
sure to ξ if

lim
n→∞

M{|ξn − ξ| ≥ ε} = 0

for every ε > 0.

Definition 2.8. The uncertain sequence {ξn} is said to be convergent in mean
to ξ if

lim
n→∞

E[|ξn − ξ|] = 0.

Definition 2.9. Let Φ,Φ1,Φ2, . . . be the uncertainty distributions of uncer-
tain variables ξ, ξ1, ξ2, . . . , respectively. We say the uncertain sequence {ξn}
converges in distribution to ξ if

lim
n→∞

Φn(x) = Φ(x)

for all x at which Φ(x) is continuous.

Definition 2.10. The uncertain sequence {ξn} is said to be convergent uni-
formly almost surely (a.s.) to ξ if there exists an sequence of events {Ek},
M{Ek} → 0 such that {ξn} converges uniformly to ξ in Γ− Ek, for any fixed
k.

Tripathy and Nath [28] have introduced the notion of statistical convergence
of sequence of complex uncertain variables and investigated some of their prop-
erties. The notion of sequences of uncertain variables has been investigated
from different aspects by Chen et al. [3], Debnath and Tripathy [5], Nath and
Tripathy [19], Roy et al. [21], Tripathy and Dowari [24], Datta and Tripathy
[4] and others.

3. Complex uncertain variable

In this section, we procure some definitions, concepts and results on complex
uncertain variables those can be found in Peng [20].

As a complex function on uncertainty space, complex uncertain variable is
mainly used to model a complex uncertain quantity.

Definition 3.1. A complex uncertain variable is a measurable function ζ from
an uncertainty space (Γ,L,M) to the set of complex numbers, i.e., for any Borel
set B of complex numbers, the set

{ζ ∈ B} = {γ ∈ Γ : ζ(γ) ∈ B},
is an event.
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Definition 3.2. The complex uncertainty distribution Φ(x) of a complex un-
certain variable ζ is a function from C to [0, 1] defined by

Φ(c) = M{Re(ζ) ≤ Re(c), Im(ζ) ≤ Im(c)}

for any complex number c.

Lemma 3.3. A variable ζ from an uncertainty space (Γ,L,M) to the set of
complex numbers is a complex uncertain variable if and only if Re(ζ) and Im(ζ)
are uncertain variables where Re(ζ) and Im(ζ) represent the real and the imag-
inary part of ζ, respectively.

Lemma 3.4. A function Φ : C → [0, 1] is a complex uncertainty distribution
if and only if it is increasing with respect to the real part Re(c) and imaginary
part Im(c) such that

(i) limx→−∞Φ(x+ ib) 6= 1, limy→−∞Φ(a+ iy) 6= 1 for any a, b ∈ R;
(ii) limx→+∞,y→+∞ Φ(x+ iy) 6= 0,

where i =
√
−1 is the imaginary unit.

Now we give some basic concepts on p-absolutely summable sequences of
real or complex terms.

Let 1 ≤ p <∞ be a fixed real number. The space `p contains the sequences
x = (ξi) of the numbers such that

(1)

∞∑
j=1

|ξj |p <∞ for 1 ≤ p <∞,

and the metric on `p is defined by

(2) d(x, y) =

 ∞∑
j=1

|ξj − ηj |p
 1

p

,

where y = (ηj) and
∑∞
j=1 |ηj |p <∞.

`p is a Banach space with the norm given by,

‖x‖ =

 ∞∑
j=1

|ξj |p
 1

p

.

Let p = (pk) be a sequence of positive numbers. Then the spaces `(p) are
generalized as follows:

`(p) = {(xk) ∈ ω :
∑
k

|xk|pk <∞}.

Let H = supk pk < ∞ and M = max(1, H). Then the space `(p) is para-
normed by

f(x) = (
∑
k

|xk|pk)
1
M .
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Definition 3.5. Let ω be the family of all real or complex sequences. Any
subspace of ω is called a sequence space. An Orlicz function is a function
M : [0,∞) → [0,∞), which is continuous, non-decreasing and convex with
M(0) = 0,M(x) > 0 for x > 0 and M(x)→∞ as x→∞.

If convexity of Orlicz function M is replaced by

M(x+ y) ≤M(x) +M(y),

then this function is called a modulus function, defined and discussed by Ruckle
in [22].

Lindenstrauss and Tzafriri [18] used the idea of Orlicz function to construct
the sequence space

`M =

{
x ∈ ω :

∞∑
k=1

M
(
|xk|
ρ

)
<∞ for some ρ > 0

}
.

The space `M with the norm

‖x‖ = inf

{
ρ > 0 :

∞∑
k=1

M
(
|xk|
ρ

)
≤ 1

}
,

becomes a Banach space which is called an Orlicz sequence space. Linden-
strauss and Tzafriri [18] proved that every Orlicz sequence space `M contains
a subspace isomorphic to c0 or some `p, positively for a class of spaces. The
space `M is closely related to the space `p which is an Orlicz sequence space
with M(x) = xp; 1 ≤ p ≤ ∞.

Applying the concept of Orlicz function, different classes of sequences have
been introduced by Esi ([7, 8]), Esi et al. [9], Lindenstrauss and Tzafriri [18],
Tripathy and Borgohain [23], Tripathy and Dutta [6], Tripathy and Dutta [25],
Tripathy and Hazarika [26], Tripathy and Sarma [29], Tripathy and Mahanta
[27], Altin et al. [1], Krasnoselskii and Rutitsky [11], Lindenstrauss [17], Et et
al. [10] and investigated btheir different algebraic and topological properties.

4. Main results

In this section, we introduce the concept of p-absolutely summable sequences
of uncertain variables for normed and paranormed spaces using an Orlicz func-
tion. Also we introduce the Cesŕo summable sequences of paranormed type
defined by an Orlicz function. Let M represents an uncertain measure and λ is
an event and ξ = (ξn) be an uncertain sequence.

`M(u.s) =

{
ξ : M(Λ) = 1 for all ξ and

∞∑
k=1

M
(
|ξk|
ρ

)
<∞ for some ρ > 0

}
.

The space `M(u.s) with the norm,

‖ξ‖ = inf

{
ρ > 0 :

∞∑
k=1

M
(
|ξk|
ρ

)
≤ 1 with M(Λ) = 1 for all ξ

}
.
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Let p = (pk) be any sequence of positive real numbers. We define the
following sequence spaces.

`M(u.s)(p)

=

{
ξ : M(Λ) = 1 for all ξ and

∞∑
k=1

(
M
(
|ξk|
ρ

))pk
<∞ for some ρ > 0

}
,

W (M(u.s), p)

=

{
ξ : M(Λ) = 1∀ξ and

1

n

∞∑
k=1

(
M
(
|ξk − l|
ρ

))pk
→ 0 as n→∞ for some ρ > 0

}
,

W0(M(u.s), p)

=

{
ξ : M(Λ) = 1 for all ξ and

1

n

∞∑
k=1

(
M
(
|ξk|
ρ

))pk
→ 0 as n→∞ for some ρ > 0

}
,

W∞(M(u.s), p)

=

{
ξ : M(Λ) = 1 for all ξ and sup

n

1

n

∞∑
k=1

(
M
(
|ξk|
ρ

))pk
<∞ for some ρ > 0

}
.

When (ξn) is a sequence of real or complex number then `M(u.s)(p) becomes
`M(p). We denote

W (M(u.s), p),W0(M(u.s), p) and W∞(M(u.s), p)

as W (M(u.s)), W0(M(u.s)) and W∞(M(u.s)) when pk = 1 for each k.

4.1. Properties of `M(u.s)(p)

In this section we shall establish some properties of the sequence spaces
defined in the previous section. In order to discuss the properties of `M(u.s)(p)
we assume that (pk) is a bounded sequence of real numbers.

Theorem 4.1. `M(u.s)(p) is a linear set over the set of complex numbers C.

Proof. Let, ξ, ζ ∈ `M(u.s)(p) such that M(Λ) = 1 for ξ, ζ and α, β ∈ C. In
order to proof the result we need to find some ρ3 such that

∞∑
k=1

(
M
(
|αξk + βζk|

ρ3

))pk
<∞.

Since ξ, ζ ∈ `M(u.s)(p), there exist some positive ρ1 and ρ2 such that

(3)

∞∑
k=1

(
M
(
|ξk|
ρ1

))pk
<∞

and

(4)

∞∑
k=1

(
M
(
|ζk|
ρ2

))pk
<∞.
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We define, ρ3 = ρ1 + ρ2.
Since, M is non decreasing and convex

∞∑
k=1

(
M
(
|αξk + βζk|

ρ3

))pk
=

∞∑
k=1

(
M
(
|αξk + βζk|
ρ1 + ρ2

))pk
=

∞∑
k=1

(
M
(

ρ1
ρ1 + ρ2

ξk
ρ1

+
ρ2

ρ1 + ρ2

ζk
ρ2

))pk
≤
(

ρ1
ρ1 + ρ2

)pk ∞∑
k=1

(
M
(
ξk
ρ1

))pk
+

(
ρ2

ρ1 + ρ2

)pk ∞∑
k=1

(
M
(
ζk
ρ2

))pk
≤ ∞,

by (3) and (4). �

Theorem 4.2. `M(u.s)(p) is a total paranormed space with

g(ξ) = inf

ρ pn
H :

( ∞∑
k=1

[
M
(
|ξk|
ρ

)]pk) 1
H

≤ 1, n = 1, 2, . . .

 ,

where H = max(1, supk pk).

Proof. Clearly g(ξ) = g(−ξ). By using Theorem 4.1 for α = β = 1, we get

g(ξ + ζ) ≤ g(ξ) + g(ζ). Since M(0) = 0, we get inf{ρ
pn
H } = 0 for ξ = 0.

Conversely, suppose g(ξ) = 0, then

inf

ρ pn
H :

( ∞∑
k=1

[
M
(
|ξk|
ρ

)]pk) 1
H

≤ 1

 = 0.

This implies that for a given ε > 0, there exists some ρε(0 < ρε < ε) such that( ∞∑
k=1

[
M
(
|ξk|
ρε

)]pk) 1
H

≤ 1.

Thus ( ∞∑
k=1

[
M
(
|ξk|
ε

)]pk) 1
H

≤

( ∞∑
k=1

[
M
(
|ξk|
ρε

)]pk) 1
H

≤ 1.

Suppose ξnm
6= 0 for some m. Let ε→ 0, then(

|ξnm |
ε

)
→∞,

it follows that ( ∞∑
m=1

[
M
(
|ξnm |
ε

)]pm) 1
H

→∞,

which is a contradiction. Therefore ξnm
= 0 for each m.
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Finally, we prove scalar multiplication is continuous. Let λ be any number.
By definition,

g(λξ) = inf

ρ pn
H :

( ∞∑
k=1

[
M
(
|λξk|
ρ

)]pk) 1
H

≤ 1, n = 1, 2, 3, . . .

 .

Then

g(λξ) = inf

(λr)
pn
H :

( ∞∑
k=1

[
M
(
|ξk|
r

)]pk) 1
H

≤ 1, n = 1, 2, 3, . . .

 ,

where r = ρ
λ .

Since |λ|pk ≤ max(1, |λ|H) therefore |λ|
pk
H ≤ max(1, |λ|H)

1
H .

Hence

g(λξ)

≤ max(1, |λ|H)
1
H inf

(r)
pn
H :

( ∞∑
k=1

[
M
(
|ξk|
r

)]pk) 1
H

≤ 1

 n = 1, 2, 3, . . . ,

which converges to zero as g(ξ) converges to zero in `M(u.s)(p). Now suppose
λn → 0 and ξ is in lM(u.s)(p). For arbitrary ε > 0, let N be a positive integer
such that

∞∑
k=N+1

[
M
(
|ξk|
ρ

)]pk
<
ε

2

for some ρ > 0. This implies that( ∞∑
k=N+1

[
M
(
|ξk|
ρ

)]pk) 1
H

≤ ε

2
.

Let 0 < |λ| < 1, using convexity of M we get

∞∑
k=N+1

[
M
(
|ξk|
ρ

)]pk
<

∞∑
k=N+1

[
|λ|M

(
|ξk|
ρ

)]pk
<
(ε

2

)H
.

Since M is continuous every where in [0,∞),

f(t) =

N∑
k=1

[
M
(
|tξk|
ρ

)]
,

is continuous at 0. So there is 1 > δ > 0 such that |f(t)| < ε
2 for 0 < t < δ.

Let K be such that |λn| < δ for n > K, then for n > K,(
N∑
k=1

[
M
(
|λnξk|
ρ

)]pk) 1
H

<
ε

2
.
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Thus ( ∞∑
k=1

[
M
(
|λnξk|
ρ

)]pk) 1
H

< ε for n > K.
�

Remark 4.3. It can be easily verified that when M(ξ) = ξ, in the paranorm
defined for `M(u.s)(p), we can find the paranorm defined on `(p) are same.

Theorem 4.4. Let 1 ≤ pk < ∞. Then `M(u.s)(p) is a complete paranormed
space with

g(ξ) = inf

ρ pn
H :

( ∞∑
k=1

[
M
(
|ξk|
ρ

)]pk) 1
H

≤ 1, n = 1, 2, . . .

 .

Proof. Let (ξi) be any Cauchy sequence in `M(u.s)(p). Let r and ξ0 be fixed.
Then for each ε

rξ0
> 0 there exists a positive integer N such that

g(ξi − ξj) < ε

rξ0
for all i, j ≥ N.

Using definition of paranorm, we get( ∞∑
k=1

[
M

(
|ξik − ξ

j
k|

g(ξi − ξj)

)]pk) 1
H

≤ 1 for all i, j ≥ N.

Thus
∞∑
k=1

[
M

(
|ξik − ξ

j
k|

g(ξi − ξj)

)]pk
≤ 1 for all i, j ≥ N.

Since 1 ≤ pk <∞ it follows that

M

(
|ξik − ξ

j
k|

g(ξi − ξj)

)
≤ 1 for all k ≥ 1

and for all i, j ≥ N . Hence one can find r > 0 with(
ξ0
2

)
rq

(
ξ0
2

)
≥ 1,

where q is the kernel associated with M, such that

M

(
|ξik − ξ

j
k|

g(ξi − ξj)

)
≤ r

(
ξ0
2

)
q

(
ξ0
2

)
.

This implies that

|ξik − ξ
j
k| <

rξ0
2

ε

rξ0
=
ε

2
.

Hence (ξi) is a Cauchy sequence in R. Therefore for each ε(0 < ε < 1), there
exists a positive integer N such that

|ξik − ξ| < ε for all i, j ≥ N.
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Using continuity of M, we find that(
N∑
k=1

(
M

(
|ξik − limj→∞ ξjk|

ρ

))pk) 1
H

≤ 1.

Thus (
N∑
k=1

(
M
(
|ξik − ξ|

ρ

))pk) 1
H

≤ 1.

Taking infimum of such ρ’s we get

inf

ρ pn
H :

(
N∑
k=1

[
M
(
|ξk − ξ|

ρ

)]pk) 1
H

≤ 1

 < ε

for all i ≥ N and j → ∞. Since (ξi) ∈ lM(u.s)(p) and M is continuous, it
follows that ξ ∈ lM(u.s)(p). This completes the proof of the theorem. �

Theorem 4.5. Let 0 < pk ≤ qk <∞ for each k. Then

`M(u.s)(p) ⊆ `M(u.s)(q).

Proof. Let ξ ∈ `M(u.s)(p). Then there exists some ρ > 0 such that

∞∑
k=1

(
M
(
|ξk|
ρ

))pk
≤ ∞.

This implies that

M
(
|ξk|
ρ

)
≤ 1 for sufficiently large values of i.

Since M is non-decreasing, we get∑(
M
(
|ξk|
ρ

))qk
≤
∑(

M
(
|ξk|
ρ

))pk
<∞.

Hence ξ ∈ lM(u.s)(q). �

4.2. Properties of spaces W (M(u.s), p), W0(M(u.s), p) and
W∞(M(u.s), p)

In this section we study some properties of the spaces

W (M(u.s), p),W0(M(u.s), p) and W∞(M(u.s), p)

defined in the previous section. We state the following two results without
proof.

Theorem 4.6. Let (pk) be bounded. Then W (M(u.s), p), W0(M(u.s), p) and
W∞(M(u.s), p) are linear spaces.
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Theorem 4.7. Let H = supk pk. Then W0(M(u.s), p) is a linear topological
space paranormed by g′ defined

g′(ξ) = inf

ρ pn
H :

(
1

n

n∑
k=1

[
M
(
|ξk|
ρ

)]pk) 1
H

≤ 1, n = 1, 2, . . .

 .

In order to discuss further result we need the following definition.

Definition 4.8. An Orlicz function M is said to satisfy ∆2-condition for all
values of u, if there exists, constant K > 0, such that

M(2u) ≤ KM(u), (u ≥ 0).

The ∆2-condition is equivalent to the satisfaction of inequality

M(lu) ≤ K.lM(u)

for all values of u and for l > 1.
We write [C, 1] = W1, [C, 1]0 = W0 and [C, 1]∞ = W∞.

Theorem 4.9. Let M be an Orlicz function which satisfies ∆2-condition.
Then

W1 ⊆W (M(u.s)),W0 ⊆W0(M(u.s)) and W∞ ⊆W∞(M(u.s)).

Proof. Let ξ ∈W1, then

Sn =
1

n

n∑
k=1

|ξk − l| → 0 as n→∞.

Let ε > 0 and choose δ with 0 < δ < 1 such that M(t) < ε for 0 ≤ t ≤ δ.
Write ζk = |ξk − l| and consider

n∑
k=1

M(|ζk|) =
∑
1

+
∑
2

,

where the first summation is over ζk ≤ δ and the second summation is over
ζk > δ. Since M is continuous ∑

1

< nε

and for ζk > δ, we use the fact that

ζk <
ζk
δ
< 1 +

ζk
δ
.

Since M is non decreasing and convex, it follows that

M(ζk) <M(1 +
ζk
δ

) <
1

2
M(2) +

1

2
M(

2ζk
δ

).

Since M satisfies ∆2-condition, therefore

M(ζk) <
1

2

kζk
δ
M(2) +

1

2

kζk
δ
M(2) = kζkδ

−1M(2).
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Hence
∑

2M(ζk) ≤ kδ−1M(2)nSn, which together with
∑

1 ≤ εn yields W1 ⊆
W (M). Following similar arguments we can prove that W0 ⊆ W0(M(u.s))
and W∞ ⊆W∞(M(u.s)). �

Theorem 4.10. (i) Let 0 < inf pk ≤ pk ≤ 1. Then

W (M(u.s), p) ⊆W (M(u.s)).

(ii) Let 1 < pk ≤ sup pk <∞. Then

W (M(u.s)) ⊆W (M(u.s), p).

Proof. (i) Let ξ ∈W (M(u.s), p) since 0 < inf pk ≤ 1 we get

1

n

∞∑
k=1

(
M
(
|ξk − L|

ρ

))
≤ 1

n

n∑
k=1

(
M
(
|ξk − L|

ρ

))pk
and hence ξ ∈W (M(u.s)).

(ii) Let pk ≥ 1 for each k, and supk pk <∞. Let ξ ∈W (M(u.s)). Then for
each 1 > ε > 0, there exists a positive integer N such that

1

n

n∑
k=1

(
M
(
|ξk − L|

ρ

))
≤ ε ≤ 1

for all n ≥ N . This implies that

1

n

n∑
k=1

(
M
(
|ξk − L|

ρ

))pk
≤ 1

n

n∑
k=1

(
M
(
|ξk − L|

ρ

))
.

Therefore ξ ∈W (M(u.s), p). �

Theorem 4.11. Let 0 < pk ≤ qk and
(
qk
pk

)
be bounded. Then

W (M(u.s), q) ⊆W (M(u.s), p).

Proof. Let ξ ∈ W (M(u.s), q). Write tk =
(
M
(
ξk−l
rho

))qk
and λk = pk

qk
. Since

pk ≤ qk therefore 0 < λk ≤ 1. Take 0 < λ < λk. Define uk = tk(tk ≥
1), uk = 0(tk < 1) and vk = 0(tk ≥ 1), vk = tk(tk < 1). So tk = uk + vk and

tλk

k = uλk

k + vλk

k .
Now it follows that

uλk

k ≤ uk ≤ tk and vλk

k ≤ v
λ
k .

Therefore

1

n

n∑
k=1

tλk

k ≤
1

n

n∑
k=1

+

[
1

n

n∑
k=1

vk

]λ
and hence ξ ∈W (M(u.s), p). �
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5. Conclusion

In this article we introduce the paranormed absolutely summable and the
paranormed Cesarosummable sequences of complex uncertain variables defined
by Orlicz function and have investigated some of their algebraic and topolog-
ical properties. These techniques can be applied for studying other classes of
sequences.
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Univ. “Ovidius” Constanţa Ser. Mat. 20 (2012), no. 1, 417–430. https://doi.org/10.

2478/v10309-012-0028-1

[26] B. C. Tripathy and B. Hazarika, Some I-convergent sequence spaces defined by Orlicz

functions, Acta Math. Appl. Sin. Engl. Ser. 27 (2011), no. 1, 149–154. https://doi.

org/10.1007/s10255-011-0048-z

[27] B. C. Tripathy and S. Mahanta, On a class of difference sequences related to the `p

space defined by Orlicz functions, Math. Slovaca 57 (2007), no. 2, 171–178.
[28] B. C. Tripathy and P. K. Nath, Statistical convergence of complex uncertain se-

quences, New Math. Nat. Comput. 13 (2017), no. 3, 359–374. https://doi.org/10.

1142/S1793005717500090

[29] B. C. Tripathy and B. Sarma, Vector valued double sequence spaces defined by Orlicz

function, Math. Slovaca 59 (2009), no. 6, 767–776. https://doi.org/10.2478/s12175-

009-0162-z

[30] C. You, On the convergence of uncertain sequences, Math. Comput. Modelling 49

(2009), no. 3-4, 482–487. https://doi.org/10.1016/j.mcm.2008.07.007

Pankaj Kumar Nath
Department of Mathematics

Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya

Dalgaon, Darrang, Assam-784116, India
Email address: pankaj.kumar0246@gmail.com

Binod Chandra Tripathy

Department of Mathematics
Tripura University

Suryamaninagar; Agartala-799022
Tripura India

Email address: tripathybc@yahoo.com; tripathybc@gmail.com

https://doi.org/10.4134/CKMS.c200026
https://doi.org/10.4134/CKMS.c200026
https://doi.org/10.4153/CJM-1973-102-9
https://doi.org/10.5666/KMJ.2013.53.3.319
https://doi.org/10.2298/fil1808875t
https://doi.org/10.2298/fil1808875t
https://doi.org/10.2478/v10309-012-0028-1
https://doi.org/10.2478/v10309-012-0028-1
https://doi.org/10.1007/s10255-011-0048-z
https://doi.org/10.1007/s10255-011-0048-z
https://doi.org/10.1142/S1793005717500090
https://doi.org/10.1142/S1793005717500090
https://doi.org/10.2478/s12175-009-0162-z
https://doi.org/10.2478/s12175-009-0162-z
https://doi.org/10.1016/j.mcm.2008.07.007

