• 제목/요약/키워드: palmitate

검색결과 184건 처리시간 0.026초

Studies on the Detergency Characteristics of Free Fatty Acid in Oily Soil. Part 1. Detergency of Palmitic Acid. (오염중의 유이지방산이 세척에 미치는 영향(제일보 팔미트산의 세척 특성))

  • Chung Hae Won;Kim Sung Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • 제1권1호
    • /
    • pp.31-37
    • /
    • 1977
  • The effects of surfactants and concentration of NaOH in surfactant solution on the removal of free fatty acid soil from cotton fabrics were investigated. Cotton fabrics were soiled with palm itic acid which is the most common fatty acid found in natural oily soil and washed in Lauder-ometer with various types of surfactant with or without NaOH. The rate of soil removal was estimated by analyzing palmitic acid contents in fabric before ar d after washing. Analysis of palmitic contents was made by extracting palmitic acid with azeotropic mixture of alcohol-benzene and the extracts were titrated with standard NaOH solution. It was shown that the types of surfactant are important factor in free fatty acid removal and the efficiency increases in the following order: SLS$90\%$ of initial sorption. In relation to the mechanism of detergency, the suspending and emulsifying power of surfactants were also examined. From the results of this experiments, it could be concluded that the soap formation with alkali and the suspending power of surfactant arc significant factors in free fatty acid soil removal, but the emulsifying power of it is neglizible.

  • PDF

Purification and Properties of Extracellular Lipases with Transesterification Activity and 1,3-Regioselectivity from Rhizomucor miehei and Rhizopus oryzae

  • Tako, Miklos;Kotogan, Alexandra;Papp, Tamas;Kadaikunnan, Shine;Alharbi, Naiyf S.;Vagvolgyi, Csaba
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권2호
    • /
    • pp.277-288
    • /
    • 2017
  • Rhizomucor miehei NRRL 5282 and Rhizopus oryzae NRRL 1526 can produce lipases with high synthetic activities in wheat bran-based solid-state culture. In this study, the purification and biochemical characterization of the lipolytic activities of these lipases are presented. SDS-PAGE indicated a molecular mass of about 55 and 35 kDa for the purified R. miehei and Rh. oryzae enzymes, respectively. p-Nitrophenyl palmitate (pNPP) hydrolysis was maximal at $40^{\circ}C$ and pH 7.0 for the R. miehei lipase, and at $30^{\circ}C$ and pH 5.2 for the Rh. oryzae enzyme. The enzymes showed almost equal affinity to pNPP, but the $V_{max}$ of the Rh. oryzae lipase was about 1.13 times higher than that determined for R. miehei using the same substrate. For both enzymes, a dramatic loss of activity was observed in the presence of 5 mM $Hg^{2+}$, $Zn^{2+}$, or $Mn^{2+}$, 10 mM N-bromosuccinimide or sodium dodecyl sulfate, and 5-10% (v/v) of hexanol or butanol. At the same time, they proved to be extraordinarily stable in the presence of n-hexane, cyclohexane, n-heptane, and isooctane. Moreover, isopentanol up to 10% (v/v) and propionic acid in 1 mM concentrations increased the pNPP hydrolyzing activity of R. miehei lipase. Both enzymes had 1,3-regioselectivity, and efficiently hydrolyzed p-nitrophenyl (pNP) esters with C8-C16 acids, exhibiting maximum activity towards pNP-caprylate (R. miehei) and pNP-dodecanoate (Rh. oryzae). The purified lipases are promising candidates for various biotechnological applications.

Subunits and Composition of Carotenoprotein from Salmo Salar Eggs (연어알에서 분리한 Carotenoprotein의 구조적 특성)

  • Jae-Woong Kim;Tae-Jin Min;Tae-Young Lee
    • Journal of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.377-384
    • /
    • 1988
  • Carotenoprotein from Salmo Salar eggs was purified and characterized by CM-cellulose, 50% $(NH_4)_2SO_4$, DEAE-cellulose and sephadex G-75 column. The chromoprotein had a spectrum with ${\lambda}_{max}$ 409, 540 and 580nm in p-buffer (pH 7.0) at initial step. Molecular weights by sephadex G-200 gel filtration were 50, 200 and 26,000 daltons. SDS-PAGE analysis showed a structure with four identical subunits (12,500 daltons). Its sample retained a small amount of carbohydrates and lipids. Amino acids were analyzed, and mannose, galactose and glucosamine also were identified. Carotenoid extacted with acetone was found to be astaxanthin ester by partition test, epoxy test, iodine test, allylic test, reduction, acetylation, uv/vis, ir and nmr datas. Stearate (47.9%) and palmitate (21.4%) were predominant fatty acids in the astaxanthin ester.

  • PDF

Formation of the multiamellar vesicles of AHAsomes and effect of removal on the horny layer (AHAsomes의 multilamellar vesicles형성과 각질제거 효과)

  • 김인영;서봉석
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • 제21권2호
    • /
    • pp.1-21
    • /
    • 1995
  • In this context, it should be mentioned that multilamellar vesicles can be prepared with the main compounds of the intercellular lipids, ceramides, cholesterol, cholesteryl ester, squalane, lecithin, wax ester by effect of the wetting. We investigated properties formation of MLV with use of the AHAsomes and Microfluidizer. The multilamellar vesicles are formed merely adding polyol and water phase, followed with the microfluidizer. Formation of a practically pure AHAsomes system, containing the active ingredients directly incorporated without need for preservatives. There were very good encapsulated properties of the active ingredients whether hydrophilic(malic acid, tartaric acid, lactic acid, allantoin, urea) and hydrophobic(vitamin-I acetate, vitamin-A palmitate). Optimum condition (ormatiom of MLV was passed three times in the microfluidizer, particle size of the vesicles should be within range 50-523nm (mean=163.5nm). As application, It was compared that horny layer of the sole of foots removal with the general OM emulsion and the AHAsomes cream. There was used for three months, those got recovery wrinkles about 151.8% and elasticity three times more the AHAsomes than O/W emulsions, It was confirmed with the Image Analyzer and the Cutometer.

  • PDF

Vitamin A supplementation modifies the antioxidant system in rats

  • Cha, Jung-Hwa;Yu, Qi-Ming;Seo, Jung-Sook
    • Nutrition Research and Practice
    • /
    • 제10권1호
    • /
    • pp.26-32
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: It has been shown that vitamin A supplementation has different effects on skeletal health and the antioxidant system. Deficiency or excess of this vitamin can lead to health problems. Vitamin A can work as either an antioxidant or prooxidant depending on its concentration. The present study was conducted to investigate the effects of different doses of vitamin A supplementation on the antioxidant system in rats. MATERIALS/METHODS: Forty Spargue-Dawley male rats were divided into four groups according to the dose of vitamin A received: 0 (A0), 4,000 (A1), 8,000 (A2), and 20,000 (A3) IU retinyl palmitate/kg diet. After a feeding period of 4 wks, lipid peroxide levels, glutathione concentration, antioxidant enzyme activities, and vitamins A and E concentrations were measured. Histopathological changes were observed in rat liver tissue using an optical microscope and transmission electron microscope. RESULTS: Lipid peroxide levels in plasma were significantly decreased in the A1 and A2 groups compared to the A0 rats. Erythrocyte catalase and hepatic superoxide dismutase activities of the A2 group were significantly higher than those of the A0 group. Hepatic glutathione peroxidase activity was significantly lower in the A3 group compared to the other groups. Total glutathione concentrations were significantly higher in the A1 and A2 groups than in the A0 group. Histological examination of liver tissue showed that excessive supplementation of vitamin A might lead to lipid droplet accumulation and nuclear membrane deformation. CONCLUSIONS: These results indicate that appropriate supplementation of vitamin A might have a beneficial effect on the antioxidant system in rats.

A Study on the Latest Research Trends in Natural products with Anti-Aging Effects (항노화 효능을 가진 천연물에 대한 최신 연구 동향에 관한 연구)

  • Pyo, Young-Hee;You, Seon-Hee
    • Journal of Convergence for Information Technology
    • /
    • 제9권12호
    • /
    • pp.286-293
    • /
    • 2019
  • In this study, four types of retinol, retinyl palmitate, adenocin, and polytoxylate-dretinamide, which are the ingredients of the Ministry of Food and Drug Safety Notice, included in the study. also we looked at trends in research on Sciadopitys verticillata, Prunella vulgaris, Celosia cristata L., Brazilin, Persicaria hydropiper, Astragalus membranaceus Bunge, Forsythiae Fructus, Lithospermum root, Rheum undulatum L. and Cistanche deserticola Y. C. Ma a natural material that has the efficacy of antioxidant aging. The anti-aging study so far has been found to be centered mainly on collagen production and elastase synthesis inhibition mechanisms. However, given that the aging process of the skin is caused by various ageing processes, it is believed that anti-aging studies using safe and effective natural materials that can help the skin age with various mechanisms should be conducted.

An Essential Role of the N-Terminal Region of ACSL1 in Linking Free Fatty Acids to Mitochondrial β-Oxidation in C2C12 Myotubes

  • Nan, Jinyan;Lee, Ji Seon;Lee, Seung-Ah;Lee, Dong-Sup;Park, Kyong Soo;Chung, Sung Soo
    • Molecules and Cells
    • /
    • 제44권9호
    • /
    • pp.637-646
    • /
    • 2021
  • Free fatty acids are converted to acyl-CoA by long-chain acyl-CoA synthetases (ACSLs) before entering into metabolic pathways for lipid biosynthesis or degradation. ACSL family members have highly conserved amino acid sequences except for their N-terminal regions. Several reports have shown that ACSL1, among the ACSLs, is located in mitochondria and mainly leads fatty acids to the β-oxidation pathway in various cell types. In this study, we investigated how ACSL1 was localized in mitochondria and whether ACSL1 overexpression affected fatty acid oxidation (FAO) rates in C2C12 myotubes. We generated an ACSL1 mutant in which the N-terminal 100 amino acids were deleted and compared its localization and function with those of the ACSL1 wild type. We found that ACSL1 adjoined the outer membrane of mitochondria through interaction of its N-terminal region with carnitine palmitoyltransferase-1b (CPT1b) in C2C12 myotubes. In addition, overexpressed ACSL1, but not the ACSL1 mutant, increased FAO, and ameliorated palmitate-induced insulin resistance in C2C12 myotubes. These results suggested that targeting of ACSL1 to mitochondria is essential in increasing FAO in myotubes, which can reduce insulin resistance in obesity and related metabolic disorders.

Identification and Characterization of a Novel Thermostable GDSL-Type Lipase from Geobacillus thermocatenulatus

  • Jo, Eunhye;Kim, Jihye;Lee, Areum;Moon, Keumok;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권3호
    • /
    • pp.483-491
    • /
    • 2021
  • Two putative genes, lip29 and est29, encoding lipolytic enzymes from the thermophilic bacterium Geobacillus thermocatenulatus KCTC 3921 were cloned and overexpressed in Escherichia coli. The recombinant Lip29 and Est29 were purified 67.3-fold to homogeneity with specific activity of 2.27 U/mg and recovery of 5.8% and 14.4-fold with specific activity of 0.92 U/mg and recovery of 1.3%, respectively. The molecular mass of each purified enzyme was estimated to be 29 kDa by SDS-PAGE. The alignment analysis of amino acid sequences revealed that both enzymes belonged to GDSL lipase/esterase family including conserved blocks with SGNH catalytic residues which was mainly identified in plants before. While Est29 showed high specificity toward short-chain fatty acids (C4-C8), Lip29 showed strong lipolytic activity to long-chain fatty acids (C12-C16). The optimal activity of Lip29 toward p-nitrophenyl palmitate as a substrate was observed at 50℃ and pH 9.5, respectively, and its activity was maintained more than 24 h at optimal temperatures, indicating that Lip29 was thermostable. Lip29 exhibited high tolerance against detergents and metal ions. The homology modeling and substrate docking revealed that the long-chain substrates showed the greatest binding affinity toward enzyme. Based on the biochemical and insilico analyses, we present for the first time a GDSL-type lipase in the thermophilic bacteria group.

An organofunctionalized MgO∙SiO2 hybrid support and its performance in the immobilization of lipase from Candida rugosa

  • Kolodziejczak-Radzimska, Agnieszka;Zdarta, Jakub;Ciesielczyk, Filip;Jesionowski, Teofil
    • Korean Journal of Chemical Engineering
    • /
    • 제35권11호
    • /
    • pp.2220-2231
    • /
    • 2018
  • Lipase from Candida rugosa was immobilized on $MgO{\cdot}SiO_2$ hybrid grafted with amine, thiol, cyano, phenyl, epoxy and carbonyl groups. The products were analyzed using Fourier transform infrared spectroscopy, nuclear magnetic resonance, low-temperature $N_2$ sorption and elemental analysis. Additionally, the degree of coverage of the oxide material surface with different functional groups and the number of surface functional groups were estimated. The Bradford method was used to determine the quantity of immobilized enzyme. The largest quantity of enzyme (25-28 mg/g) was immobilized on the hybrid functionalized with amine and carbonyl groups. On the basis of hydrolysis reaction of p-nitrophenyl palmitate to p-nitrophenol, it was determined how the catalytic activity of the obtained biocatalysts is affected by pH, temperature, storage time, and repeated reaction cycles. The best results for catalytic activity were obtained for the lipase immobilized on $MgO{\cdot}SiO_2$ hybrids with amine and carbonyl groups. The biocatalytic system demonstrated activity above 40% in the pH range 4-10 and in the temperature range $30-70^{\circ}C$. Lipase immobilized on the $MgO{\cdot}SiO_2$ systems with amine and epoxy groups retains, respectively, around 80% and 60% of its initial activity after 30 days of storage, and approximately 60-70% after 10 reaction cycles.

Common and differential effects of docosahexaenoic acid and eicosapentaenoic acid on helper T-cell responses and associated pathways

  • Lee, Jaeho;Choi, Yu Ri;Kim, Miso;Park, Jung Mi;Kang, Moonjong;Oh, Jaewon;Lee, Chan Joo;Park, Sungha;Kang, Seok-Min;Manabe, Ichiro;Ann, Soo-jin;Lee, Sang-Hak
    • BMB Reports
    • /
    • 제54권5호
    • /
    • pp.278-283
    • /
    • 2021
  • Our understanding of the differential effects between specific omega-3 fatty acids is incomplete. Here, we aimed to evaluate the effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on T-helper type 1 (Th1) cell responses and identify the pathways associated with these responses. Naïve CD4+ T cells were co-cultured with bone marrow-derived dendritic cells (DCs) in the presence or absence of palmitate (PA), DHA, or EPA. DHA or EPA treatment lowered the number of differentiated IFN-γ-positive cells and inhibited the secretion of IFN-γ, whereas only DHA increased IL-2 and reduced TNF-α secretion. There was reduced expression of MHC II on DCs after DHA or EPA treatment. In the DC-independent model, DHA and EPA reduced Th1 cell differentiation and lowered the cell number. DHA and EPA markedly inhibited IFN-γ secretion, while only EPA reduced TNF-α secretion. Microarray analysis identified pathways involved in inflammation, immunity, metabolism, and cell proliferation. Moreover, DHA and EPA inhibited Th1 cells through the regulation of diverse pathways and genes, including Igf1 and Cpt1a. Our results showed that DHA and EPA had largely comparable inhibitory effects on Th1 cell differentiation. However, each of the fatty acids also had distinct effects on specific cytokine secretion, particularly according to the presence of DCs.