DOI QR코드

DOI QR Code

An Essential Role of the N-Terminal Region of ACSL1 in Linking Free Fatty Acids to Mitochondrial β-Oxidation in C2C12 Myotubes

  • Nan, Jinyan (Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Lee, Ji Seon (Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Lee, Seung-Ah (Genomic Medicine Institute, Seoul National University Medical Research Center) ;
  • Lee, Dong-Sup (Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Park, Kyong Soo (Department of Internal Medicine, Seoul National University College of Medicine) ;
  • Chung, Sung Soo (Biomedical Research Institute, Seoul National University Hospital)
  • Received : 2021.04.08
  • Accepted : 2021.08.03
  • Published : 2021.09.30

Abstract

Free fatty acids are converted to acyl-CoA by long-chain acyl-CoA synthetases (ACSLs) before entering into metabolic pathways for lipid biosynthesis or degradation. ACSL family members have highly conserved amino acid sequences except for their N-terminal regions. Several reports have shown that ACSL1, among the ACSLs, is located in mitochondria and mainly leads fatty acids to the β-oxidation pathway in various cell types. In this study, we investigated how ACSL1 was localized in mitochondria and whether ACSL1 overexpression affected fatty acid oxidation (FAO) rates in C2C12 myotubes. We generated an ACSL1 mutant in which the N-terminal 100 amino acids were deleted and compared its localization and function with those of the ACSL1 wild type. We found that ACSL1 adjoined the outer membrane of mitochondria through interaction of its N-terminal region with carnitine palmitoyltransferase-1b (CPT1b) in C2C12 myotubes. In addition, overexpressed ACSL1, but not the ACSL1 mutant, increased FAO, and ameliorated palmitate-induced insulin resistance in C2C12 myotubes. These results suggested that targeting of ACSL1 to mitochondria is essential in increasing FAO in myotubes, which can reduce insulin resistance in obesity and related metabolic disorders.

Keywords

Acknowledgement

This research was supported by Basic Science research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of education (NRF-2019R1A2C3009517) (NRF-2019R1A2C1008633).

References

  1. Badin, P.M., Langin, D., and Moro, C. (2013). Dynamics of skeletal muscle lipid pools. Trends Endocrinol. Metab. 24, 607-615. https://doi.org/10.1016/j.tem.2013.08.001
  2. Bowman, T.A., O'Keeffe, K.R., D'Aquila, T., Yan, Q.W., Griffin, J.D., Killion, E.A., Salter, D.M., Mashek, D.G., Buhman, K.K., and Greenberg, A.S. (2016). Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption. Mol. Metab. 5, 210-220. https://doi.org/10.1016/j.molmet.2016.01.001
  3. Bruce, C.R., Hoy, A.J., Turner, N., Watt, M.J., Allen, T.L., Carpenter, K., Cooney, G.J., Febbraio, M.A., and Kraegen, E.W. (2009). Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes 58, 550-558. https://doi.org/10.2337/db08-1078
  4. Bu, S.Y., Mashek, M.T., and Mashek, D.G. (2009). Suppression of long chain acyl-CoA synthetase 3 decreases hepatic de novo fatty acid synthesis through decreased transcriptional activity. J. Biol. Chem. 284, 30474-30483. https://doi.org/10.1074/jbc.M109.036665
  5. Chaurasia, B. and Summers, S.A. (2015). Ceramides - lipotoxic inducers of metabolic disorders. Trends Endocrinol. Metab. 26, 538-550. https://doi.org/10.1016/j.tem.2015.07.006
  6. Coll, T., Eyre, E., Rodriguez-Calvo, R., Palomer, X., Sanchez, R.M., Merlos, M., Laguna, J.C., and Vazquez-Carrera, M. (2008). Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells. J. Biol. Chem. 283, 11107-11116. https://doi.org/10.1074/jbc.M708700200
  7. Cooper, D.E., Young, P.A., Klett, E.L., and Coleman, R.A. (2015). Physiological consequences of compartmentalized acyl-CoA metabolism. J. Biol. Chem. 290, 20023-20031. https://doi.org/10.1074/jbc.R115.663260
  8. Czech, M.P. (2017). Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 23, 804-814. https://doi.org/10.1038/nm.4350
  9. Ellis, J.M., Li, L.O., Wu, P.C., Koves, T.R., Ilkayeva, O., Stevens, R.D., Watkins, S.M., Muoio, D.M., and Coleman, R.A. (2010). Adipose acyl-CoA synthetase-1 directs fatty acids toward beta-oxidation and is required for cold thermogenesis. Cell Metab. 12, 53-64. https://doi.org/10.1016/j.cmet.2010.05.012
  10. Gargiulo, C.E., Stuhlsatz-Krouper, S.M., and Schaffer, J.E. (1999). Localization of adipocyte long-chain fatty acyl-CoA synthetase at the plasma membrane. J. Lipid Res. 40, 881-892. https://doi.org/10.1016/S0022-2275(20)32123-4
  11. Grevengoed, T.J., Cooper, D.E., Young, P.A., Ellis, J.M., and Coleman, R.A. (2015). Loss of long-chain acyl-CoA synthetase isoform 1 impairs cardiac autophagy and mitochondrial structure through mechanistic target of rapamycin complex 1 activation. FASEB J. 29, 4641-4653. https://doi.org/10.1096/fj.15-272732
  12. Henique, C., Mansouri, A., Fumey, G., Lenoir, V., Girard, J., Bouillaud, F., Prip-Buus, C., and Cohen, I. (2010). Increased mitochondrial fatty acid oxidation is sufficient to protect skeletal muscle cells from palmitate-induced apoptosis. J. Biol. Chem. 285, 36818-36827. https://doi.org/10.1074/jbc.M110.170431
  13. Kelley, D.E. and Mandarino, L.J. (2000). Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 49, 677-683. https://doi.org/10.2337/diabetes.49.5.677
  14. Koo, Y.D., Choi, J.W., Kim, M., Chae, S., Ahn, B.Y., Kim, M., Oh, B.C., Hwang, D., Seol, J.H., Kim, Y.B., et al. (2015). SUMO-specific protease 2 (SENP2) is an important regulator of fatty acid metabolism in skeletal muscle. Diabetes 64, 2420-2431. https://doi.org/10.2337/db15-0115
  15. Koves, T.R., Ussher, J.R., Noland, R.C., Slentz, D., Mosedale, M., Ilkayeva, O., Bain, J., Stevens, R., Dyck, J.R., Newgard, C.B., et al. (2008). Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 7, 45-56. https://doi.org/10.1016/j.cmet.2007.10.013
  16. Li, L.O., Ellis, J.M., Paich, H.A., Wang, S., Gong, N., Altshuller, G., Thresher, R.J., Koves, T.R., Watkins, S.M., Muoio, D.M., et al. (2009). Liver-specific loss of long chain acyl-CoA synthetase-1 decreases triacylglycerol synthesis and beta-oxidation and alters phospholipid fatty acid composition. J. Biol. Chem. 284, 27816-27826. https://doi.org/10.1074/jbc.M109.022467
  17. Li, L.O., Grevengoed, T.J., Paul, D.S., Ilkayeva, O., Koves, T.R., Pascual, F., Newgard, C.B., Muoio, D.M., and Coleman, R.A. (2015). Compartmentalized acyl-CoA metabolism in skeletal muscle regulates systemic glucose homeostasis. Diabetes 64, 23-35. https://doi.org/10.2337/db13-1070
  18. Li, L.O., Mashek, D.G., An, J., Doughman, S.D., Newgard, C.B., and Coleman, R.A. (2006). Overexpression of rat long chain acyl-coa synthetase 1 alters fatty acid metabolism in rat primary hepatocytes. J. Biol. Chem. 281, 37246-37255. https://doi.org/10.1074/jbc.M604427200
  19. Listenberger, L.L., Han, X., Lewis, S.E., Cases, S., Farese, R.V., Jr., Ory, D.S., and Schaffer, J.E. (2003). Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. U. S. A. 100, 3077-3082. https://doi.org/10.1073/pnas.0630588100
  20. Mannaerts, G.P., Van Veldhoven, P., Van Broekhoven, A., Vandebroek, G., and Debeer, L.J. (1982). Evidence that peroxisomal acyl-CoA synthetase is located at the cytoplasmic side of the peroxisomal membrane. Biochem. J. 204, 17-23. https://doi.org/10.1042/bj2040017
  21. Mashek, D.G., Li, L.O., and Coleman, R.A. (2006). Rat long-chain acyl-CoA synthetase mRNA, protein, and activity vary in tissue distribution and in response to diet. J. Lipid Res. 47, 2004-2010. https://doi.org/10.1194/jlr.M600150-JLR200
  22. Palomer, X., Pizarro-Delgado, J., Barroso, E., and Vazquez-Carrera, M. (2018). Palmitic and oleic acid: the yin and yang of fatty acids in type 2 diabetes mellitus. Trends Endocrinol. Metab. 29, 178-190. https://doi.org/10.1016/j.tem.2017.11.009
  23. Parkes, H.A., Preston, E., Wilks, D., Ballesteros, M., Carpenter, L., Wood, L., Kraegen, E.W., Furler, S.M., and Cooney, G.J. (2006). Overexpression of acyl-CoA synthetase-1 increases lipid deposition in hepatic (HepG2) cells and rodent liver in vivo. Am. J. Physiol. Endocrinol. Metab. 291, E737-E744. https://doi.org/10.1152/ajpendo.00112.2006
  24. Sebastian, D., Guitart, M., Garcia-Martinez, C., Mauvezin, C., Orellana-Gavalda, J.M., Serra, D., Gomez-Foix, A.M., Hegardt, F.G., and Asins, G. (2009). Novel role of FATP1 in mitochondrial fatty acid oxidation in skeletal muscle cells. J. Lipid Res. 50, 1789-1799. https://doi.org/10.1194/jlr.M800535-JLR200
  25. Sebastian, D., Herrero, L., Serra, D., Asins, G., and Hegardt, F.G. (2007). CPT I overexpression protects L6E9 muscle cells from fatty acid-induced insulin resistance. Am. J. Physiol. Endocrinol. Metab. 292, E677-E686. https://doi.org/10.1152/ajpendo.00360.2006
  26. Soupene, E. and Kuypers, F.A. (2006). Multiple erythroid isoforms of human long-chain acyl-CoA synthetases are produced by switch of the fatty acid gate domains. BMC Mol. Biol. 7, 21. https://doi.org/10.1186/1471-2199-7-21
  27. Soupene, E. and Kuypers, F.A. (2008). Mammalian long-chain acyl-CoA synthetases. Exp. Biol. Med. (Maywood) 233, 507-521. https://doi.org/10.3181/0710-MR-287
  28. Teodoro, B.G., Sampaio, I.H., Bomfim, L.H., Queiroz, A.L., Silveira, L.R., Souza, A.O., Fernandes, A.M., Eberlin, M.N., Huang, T.Y., Zheng, D., et al. (2017). Long-chain acyl-CoA synthetase 6 regulates lipid synthesis and mitochondrial oxidative capacity in human and rat skeletal muscle. J. Physiol. 595, 677-693. https://doi.org/10.1113/JP272962
  29. Young, P.A., Senkal, C.E., Suchanek, A.L., Grevengoed, T.J., Lin, D.D., Zhao, L., Crunk, A.E., Klett, E.L., Fullekrug, J., Obeid, L.M., et al. (2018). Long-chain acyl-CoA synthetase 1 interacts with key proteins that activate and direct fatty acids into niche hepatic pathways. J. Biol. Chem. 293, 16724-16740. https://doi.org/10.1074/jbc.RA118.004049
  30. Zhan, T., Poppelreuther, M., Ehehalt, R., and Fullekrug, J. (2012). Overexpressed FATP1, ACSVL4/FATP4 and ACSL1 increase the cellular fatty acid uptake of 3T3-L1 adipocytes but are localized on intracellular membranes. PLoS One 7, e45087. https://doi.org/10.1371/journal.pone.0045087
  31. Zhao, L., Pascual, F., Bacudio, L., Suchanek, A.L., Young, P.A., Li, L.O., Martin, S.A., Camporez, J.P., Perry, R.J., Shulman, G.I., et al. (2019). Defective fatty acid oxidation in mice with muscle-specific acyl-CoA synthetase 1 deficiency increases amino acid use and impairs muscle function. J. Biol. Chem. 294, 8819-8833. https://doi.org/10.1074/jbc.RA118.006790
  32. Zhao, Z., Abbas Raza, S.H., Tian, H., Shi, B., Luo, Y., Wang, J., Liu, X., Li, S., Bai, Y., and Hu, J. (2020). Effects of overexpression of ACSL1 gene on the synthesis of unsaturated fatty acids in adipocytes of bovine. Arch. Biochem. Biophys. 695, 108648. https://doi.org/10.1016/j.abb.2020.108648