DOI QR코드

DOI QR Code

An organofunctionalized MgO∙SiO2 hybrid support and its performance in the immobilization of lipase from Candida rugosa

  • Kolodziejczak-Radzimska, Agnieszka (Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology) ;
  • Zdarta, Jakub (Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology) ;
  • Ciesielczyk, Filip (Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology) ;
  • Jesionowski, Teofil (Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology)
  • Received : 2018.05.07
  • Accepted : 2018.08.28
  • Published : 2018.11.30

Abstract

Lipase from Candida rugosa was immobilized on $MgO{\cdot}SiO_2$ hybrid grafted with amine, thiol, cyano, phenyl, epoxy and carbonyl groups. The products were analyzed using Fourier transform infrared spectroscopy, nuclear magnetic resonance, low-temperature $N_2$ sorption and elemental analysis. Additionally, the degree of coverage of the oxide material surface with different functional groups and the number of surface functional groups were estimated. The Bradford method was used to determine the quantity of immobilized enzyme. The largest quantity of enzyme (25-28 mg/g) was immobilized on the hybrid functionalized with amine and carbonyl groups. On the basis of hydrolysis reaction of p-nitrophenyl palmitate to p-nitrophenol, it was determined how the catalytic activity of the obtained biocatalysts is affected by pH, temperature, storage time, and repeated reaction cycles. The best results for catalytic activity were obtained for the lipase immobilized on $MgO{\cdot}SiO_2$ hybrids with amine and carbonyl groups. The biocatalytic system demonstrated activity above 40% in the pH range 4-10 and in the temperature range $30-70^{\circ}C$. Lipase immobilized on the $MgO{\cdot}SiO_2$ systems with amine and epoxy groups retains, respectively, around 80% and 60% of its initial activity after 30 days of storage, and approximately 60-70% after 10 reaction cycles.

Keywords

Acknowledgement

Supported by : Poznan University of Technology

References

  1. P. Zucca and E. Sanjust, Molecules, 19, 14139 (2014). https://doi.org/10.3390/molecules190914139
  2. D. M. Liu, J. Chen and Y. P. Shi, Trends Anal. Chem., 102, 332 (2018). https://doi.org/10.1016/j.trac.2018.03.011
  3. D. N. Tran and K. J. Balkus, ACS Catal., 1, 956 (2011). https://doi.org/10.1021/cs200124a
  4. H. H. Weetall, Methods Enzymol., 44, 134 (1976).
  5. M. Hartmann and X. Kostrov, Chem. Soc. Rev., 42, 6277 (2013). https://doi.org/10.1039/c3cs60021a
  6. L. Cao, Carrier-bound immobilized enzymes: principles, application and design, Wiley, New York (2006).
  7. Z. Zhou and M. Hartmann, Top. Catal., 55, 1081 (2012). https://doi.org/10.1007/s11244-012-9905-0
  8. C. Mateo, J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan and R. Fernandez-Lafuente, Enzyme Microb. Technol., 40, 1451 (2007). https://doi.org/10.1016/j.enzmictec.2007.01.018
  9. J. Zdarta, A. S. Meyer, T. Jesionowski and M. Pinelo, Catalysts, 8, 92 (2018). https://doi.org/10.3390/catal8020092
  10. M. Hartmann and X. Kostrov, Chem. Soc. Rev., 42, 6277 (2013). https://doi.org/10.1039/c3cs60021a
  11. K. Kato, R. Irimescu, T. Saito, Y. Yokogawa and H. Takahashi, Biosci., Biotechnol., Biochem., 67, 203 (2003). https://doi.org/10.1271/bbb.67.203
  12. D. Goradia, J. Cooney, B. K. Hodnett and E. Magner, J. Mol. Catal. B-Enzym., 32, 231 (2005). https://doi.org/10.1016/j.molcatb.2004.12.007
  13. J. Forde, A. Vakurov, T. D. Gibson, P. Millner, M. Whelehan, I. W. Marison and C. O’Fagain, J. Mol. Catal. B-Enzym., 32, 231 (2005). https://doi.org/10.1016/j.molcatb.2004.12.007
  14. T. Jesionowski, J. Zdarta and B. Krajewska, Adsorption, 20, 801 (2014). https://doi.org/10.1007/s10450-014-9623-y
  15. B. Zhao, X. Liu, Y. Jiang, L. Zhou, Y. He and J. Gao, Appl. Biochem. Biotechnol., 173, 1802 (2014). https://doi.org/10.1007/s12010-014-0967-2
  16. Y. Wan and D. Y. Zhao, Chem. Rev., 107, 2821 (2007). https://doi.org/10.1021/cr068020s
  17. F. Hoffman, M. Cornelius, J. Morell and M. Froba, Angew. Chem. Int. Ed. Engl., 45 3216 (2006). https://doi.org/10.1002/anie.200503075
  18. E. Magner, Chem. Soc. Rev., 42, 6213 (2013). https://doi.org/10.1039/c2cs35450k
  19. S. S. Tukel and O. Alptekin, Process Biochem., 39, 2149 (2004). https://doi.org/10.1016/j.procbio.2003.11.010
  20. G. Ozyilmaz, S. S. Tukel and O. Alptekin, J. Mol. Catal. B-Enzym., 35, 154 (2005). https://doi.org/10.1016/j.molcatb.2005.07.001
  21. M. Hartmann and D. Jung, J. Mater. Chem., 20, 844 (2010). https://doi.org/10.1039/B907869J
  22. S. Hudson, J. Cooney and E. Magner, Angew. Chem. Int. Ed. Eng., 47, 8582 (2008). https://doi.org/10.1002/anie.200705238
  23. N. H. Abdallah, M. Schlumpberger, D. A. Gaffney, J. P. Hanrahan, J. M. Tobin and E. Magner, J. Mol. Catal. B-Enzym., 108, 82 (2014). https://doi.org/10.1016/j.molcatb.2014.06.007
  24. W. Liu and L. N. Wei, J. Mol. Catal., 30, 182 (2016).
  25. X. Y. Wang, G. Tian, N. Jiang and B. L. Su, Energy Environ. Sci., 5, 5540 (2012). https://doi.org/10.1039/C1EE02391H
  26. W. Xie and J. Wang, Energy Fuels, 28, 2624 (2014). https://doi.org/10.1021/ef500131s
  27. Z. Chen, L. Liu, X. Wu and R. Yang, RSC Adv., 6, 108583 (2016). https://doi.org/10.1039/C6RA24476A
  28. W. Xie and X. Zang, Food Chem., 257, 15 (2018). https://doi.org/10.1016/j.foodchem.2018.03.010
  29. W. Xie and X. Zang, Food Chem., 194, 1283 (2016). https://doi.org/10.1016/j.foodchem.2015.09.009
  30. Q. Y. Li, P. Y. Wang, Y. L. Zhou, Z. R. Nie and Q. Wei, J. Sol-Gel Sci. Technol., 78, 523 (2016). https://doi.org/10.1007/s10971-016-3967-6
  31. W. Xie and M. Huang, Energy Convers. Manage., 159, 42 (2018). https://doi.org/10.1016/j.enconman.2018.01.021
  32. M. Heidanzadeh, E. Doustkhah, S. Rostamnia, P. F. Rezaei, F. D. Harzevili and B. Zeynizadeh, Int. J. Biol. Macromol., 101, 696 (2017). https://doi.org/10.1016/j.ijbiomac.2017.03.152
  33. L. S. Wan, B. B. Ke and Z. K. Xu, Enzyme Microb. Technol., 42, 332 (2008). https://doi.org/10.1016/j.enzmictec.2007.10.014
  34. W. Xie and X. Zang, Food Chem., 227, 397 (2017). https://doi.org/10.1016/j.foodchem.2017.01.082
  35. L. Klapiszewski, J. Zdarta, K. Antecka, K. Synoradzki, K. SiwinskaStefanska, D. Moszynski and T. Jesionowski, Appl. Surf. Sci., 422, 94 (2018).
  36. J. Zdarta, K. Antecka, A. Jedrzak, K. Synoradzki, M. Luczak and T. Jesionowski, Colloids Surf., B: Biointer., 169, 118 (2018). https://doi.org/10.1016/j.colsurfb.2018.05.018
  37. F. Ciesielczyk, J. Goscianska, J. Zdarta and T. Jesionowski, Colloids Surf., A: Physicochem. Eng. Aspects, 545, 39 (2018). https://doi.org/10.1016/j.colsurfa.2018.02.036
  38. M. W. Ambrogio, C. R. Thomas, Y. L. Zhao, J. L. Zink and J. F. Stodart, Acc. Chem. Res., 44, 903 (2011). https://doi.org/10.1021/ar200018x
  39. Y. T. Zhu, X. Y. Ren, Y. M. Liu, Y. Wei and L. S. Qiang, Mater. Sci. Eng., 38, 278 (2014). https://doi.org/10.1016/j.msec.2014.02.011
  40. Z. Lei, X. Liu, L. Ma, D. Liu, H. Zhong and Z. Wang, RSC Adv., 5, 38665 (2015). https://doi.org/10.1039/C5RA03755G
  41. F. Ciesielczyk, A. Krysztafkiewicz and T. Jesionowski, J. Mater. Sci., 42, 3831 (2007). https://doi.org/10.1007/s10853-006-0464-2
  42. T. Jesionowski and A. Krysztafkiewicz, Appl. Surf. Sci., 172, 18 (2001). https://doi.org/10.1016/S0169-4332(00)00828-X
  43. T. Jesionowski and A. Krysztafkiewicz, J. Non-Cryst. Solids, 277, 45 (2000). https://doi.org/10.1016/S0022-3093(00)00299-4
  44. F. Ciesielczyk, M. Nowacka, A. Przybylska and T. Jesionowski, Colloids Surf., A: Physicochem. Eng. Aspects, 376, 21 (2011). https://doi.org/10.1016/j.colsurfa.2010.08.017
  45. F. Ciesielczyk, A. Krysztafkiewicz and T. Jesionowski, Appl. Surf. Sci., 253, 8435 (2007). https://doi.org/10.1016/j.apsusc.2007.04.016
  46. M. M. Bradford, Anal. Biochem., 7, 248 (1976).
  47. K. Siwinska-Stefanska, F. Ciesielczyk, M. Nowacka and T. Jesionowski, J. Nanomater., 2012, Article ID 316173, 19 (2012), doi: 10.1155/2012/316173.
  48. J. Zdarta, K. Salek, A. Kolodziejczak-Radzimska, K. Siwinska-Stefanska, K. Szwarc-Rzepka, M. Norman, L. Klapiszewski, P. Bartczak, E. Kaczorek and T. Jesionowski, Open. Chem., 13, 138 (2015).
  49. F. Ciesielczyk, P. Bartczak, J. Zdarta and T. Jesionowski, J. Environ. Manage., 204, 123 (2017). https://doi.org/10.1016/j.jenvman.2017.08.041
  50. P. C. Ma, J. K. Kim and B. Z. Tang, Carbon, 44, 3232 (2006). https://doi.org/10.1016/j.carbon.2006.06.032
  51. A. Natalello, D. Ami, S. Brocca, M. Lotti and S. M. Doglia, Biochem. J., 385, 511 (2005). https://doi.org/10.1042/BJ20041296
  52. T. Raghavendra, A. Basak, L. Manocha, A. Shah and D. Madamwar, Bioresour. Technol., 140, 103 (2013). https://doi.org/10.1016/j.biortech.2013.04.071
  53. A. Kolodziejczak-Radzimska, J. Zdarta and T. Jesionowski, Biotechnol. Progr., 34, 767 (2018). https://doi.org/10.1002/btpr.2610
  54. J. Zdarta, L. Klapieszewski, M. Wysokowski, M. Norman, A. Kolodziejczak-Radzimska, D. Moszynski, H. Ehrlich, H. Maciejewski, A. L. Stelling and T. Jesionowski, Mar. Drugs, 13, 2424 (2015). https://doi.org/10.3390/md13042424
  55. K. Banjanac, M. Mihailovic, N. Prlainovic, M. Corovic, M. Carevic, A. Marinkovic and D. Bezbradic, J. Chem. Technol. Biotechnol., 91, 2654 (2016). https://doi.org/10.1002/jctb.4870
  56. X. Liu, Y. Fang, X. Yang, Y. Li and C. Wang, Chem. Eng. J., 336, 456 (2018). https://doi.org/10.1016/j.cej.2017.12.048
  57. K. Li, Y. Fan, Y. He, L. Zeng, X. Han and Y. Yan, Scientific Reports, 7, 1 (2017). https://doi.org/10.1038/s41598-016-0028-x
  58. C. Gunathilake and M. Jaroniec, J. Mater. Chem., 4, 10914 (2016). https://doi.org/10.1039/C6TA03916B
  59. H. Takahashi, B. Li, T. Sasaki, C. Miyazaki, T. Kajino and S. Inagaki, Chem. Mater., 12, 3301 (2000). https://doi.org/10.1021/cm000487a
  60. S. G. Hong, B. C. Kim, H. B. Na, J. Lee, J. Youn, S. W. Chung, C. W. Lee, B. Lee, H. S. Kim, E. Hsiao, S. H. Kim, B. G. Kim, H. G. Park, H. N. Chang, T. Hyeon, J. S. Dordick, J. W. Grate and J. Kim, Chem. Eng. J., 322, 510 (2017). https://doi.org/10.1016/j.cej.2017.04.022
  61. Y. Kuwahara, T. Yamanishi, T. Kamegawa, K. Mori and H. Yamashita, ChetCatChem, 5, 2527 (2013). https://doi.org/10.1002/cctc.201300072
  62. M. Khoobi, S. F. Motevalizadeh, Z. Asadgol, H. Forootanfar, A. Shafiee and M. A. Faramarzi, Biochem. Eng. J., 88, 131 (2014). https://doi.org/10.1016/j.bej.2014.04.009
  63. L. Klapiszewski, J. Zdarta and T. Jesionowski, Colloids Surf., B: Biointer., 162, 90 (2018). https://doi.org/10.1016/j.colsurfb.2017.11.045
  64. A. Straksys, T. Kochane and S. Budriene, Food Chem., 211, 294 (2016). https://doi.org/10.1016/j.foodchem.2016.05.071

Cited by

  1. A novel biocatalytic system obtained via immobilization of aminoacylase onto sol-gel derived ZrO2·SiO2 binary oxide material: physicochemical characteristic and catalytic activity study vol.25, pp.4, 2018, https://doi.org/10.1007/s10450-019-00085-7
  2. Functionalized Silicas for Metal‐Free and Metal‐Based Catalytic Applications: A Review in Perspective of Green Chemistry vol.20, pp.6, 2018, https://doi.org/10.1002/tcr.201900056
  3. Synthesis, characterization and catalytic activity of new SILPs based on MgO-SiO2 and MgO-SiO2/lignin supports vol.509, pp.None, 2021, https://doi.org/10.1016/j.mcat.2021.111615
  4. SILP materials based on TiO2-SiO2 and TiO2-SiO2/lignin supports as new catalytic materials for hydrosilylation reaction - synthesis, physicochemical charact vol.11, pp.38, 2018, https://doi.org/10.1039/d1ra03966k