Browse > Article
http://dx.doi.org/10.4014/jmb.1608.08005

Purification and Properties of Extracellular Lipases with Transesterification Activity and 1,3-Regioselectivity from Rhizomucor miehei and Rhizopus oryzae  

Tako, Miklos (Department of Microbiology, Faculty of Science and Informatics, University of Szeged)
Kotogan, Alexandra (Department of Microbiology, Faculty of Science and Informatics, University of Szeged)
Papp, Tamas (Department of Microbiology, Faculty of Science and Informatics, University of Szeged)
Kadaikunnan, Shine (Department of Botany and Microbiology, College of Science, King Saud University)
Alharbi, Naiyf S. (Department of Botany and Microbiology, College of Science, King Saud University)
Vagvolgyi, Csaba (Department of Microbiology, Faculty of Science and Informatics, University of Szeged)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.2, 2017 , pp. 277-288 More about this Journal
Abstract
Rhizomucor miehei NRRL 5282 and Rhizopus oryzae NRRL 1526 can produce lipases with high synthetic activities in wheat bran-based solid-state culture. In this study, the purification and biochemical characterization of the lipolytic activities of these lipases are presented. SDS-PAGE indicated a molecular mass of about 55 and 35 kDa for the purified R. miehei and Rh. oryzae enzymes, respectively. p-Nitrophenyl palmitate (pNPP) hydrolysis was maximal at $40^{\circ}C$ and pH 7.0 for the R. miehei lipase, and at $30^{\circ}C$ and pH 5.2 for the Rh. oryzae enzyme. The enzymes showed almost equal affinity to pNPP, but the $V_{max}$ of the Rh. oryzae lipase was about 1.13 times higher than that determined for R. miehei using the same substrate. For both enzymes, a dramatic loss of activity was observed in the presence of 5 mM $Hg^{2+}$, $Zn^{2+}$, or $Mn^{2+}$, 10 mM N-bromosuccinimide or sodium dodecyl sulfate, and 5-10% (v/v) of hexanol or butanol. At the same time, they proved to be extraordinarily stable in the presence of n-hexane, cyclohexane, n-heptane, and isooctane. Moreover, isopentanol up to 10% (v/v) and propionic acid in 1 mM concentrations increased the pNPP hydrolyzing activity of R. miehei lipase. Both enzymes had 1,3-regioselectivity, and efficiently hydrolyzed p-nitrophenyl (pNP) esters with C8-C16 acids, exhibiting maximum activity towards pNP-caprylate (R. miehei) and pNP-dodecanoate (Rh. oryzae). The purified lipases are promising candidates for various biotechnological applications.
Keywords
Zygomycetes; extracellular lipase; enzyme purification; lipolysis characterization; synthetic activity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jaeger KE, Reetz MT. 1998. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 16: 396-403.   DOI
2 Kazlauskas RJ, Bornscheuer UT. 1998. Biotransformations with lipases, pp. 37-191. In Rehm HJ, Reed G (eds.). Biotechnology: Biotransformations I, 2nd Ed., Vol. 8a. Wiley-VCH Verlag GmbH, Weinheim
3 Verma ML, Azmi W, Kanwar SS. 2008. Microbial lipases: at the interface of aqueous and non-aqueous media. Acta Microbiol. Immunol. Hung. 55: 265-294.   DOI
4 Masse L, Kennedy KJ, Chou SP. 2001. The effect of an enzymatic pretreatment on the hydrolysis and size reduction of fat particles in slaughterhouse wastewater. J. Chem. Technol. Biotechnol. 76: 629-635.   DOI
5 Takamoto T, Shirasaka H, Uyama H, Kobayashi S. 2001. Lipase-catalyzed hydrolytic degradation of polyurethane in organic solvent. Chem. Lett. 30: 492-493.   DOI
6 Ferreira JA, Lennartsson PR, Edebo L, Taherzadeh MJ. 2013. Zygomycetes-based biorefinery: present status and future prospects. Bioresour. Technol. 135: 523-532.   DOI
7 Papp T, Nyilasi I, Csernetics A, Nagy G, Tako M, Vagvolgyi C. 2016. Improvement of industrially relevant biological activities in Mucoromycotina fungi, pp. 97-118. In Schmoll M, Dattenbock C (eds.). Gene Expression Systems in Fungi: Advancements and Applications. Fungal Biology Series. Springer International Publishing, Switzerland.
8 Bakir ZB, Metin K. 2016. Purification and characterization of an alkali-thermostable lipase from thermophilic Anoxybacillus flavithermus HBB 134. J. Microbiol. Biotechnol. 26: 1087-1097.   DOI
9 Ebrahimpour A , Rahman RN, Basri M , Salleh AB. 2011. High level expression and characterization of a novel thermostable, organic solvent tolerant, 1,3-regioselective lipase from Geobacillus sp. strain ARM. Bioresour. Technol. 102: 6972-6981.   DOI
10 Lotrakul P, Dharmsthiti S. 1997. Purification and characterization of lipase from Aeromonas sobria LP004. J. Biotechnol. 54: 113-120.   DOI
11 Alnoch RC, Martini VP, Glogauer A, dos Santos Costa AC, Piovan L, Muller-Santos M, et al. 2015. Immobilization and characterization of a new regioselective and enantioselective lipase obtained from a metagenomic library. PLoS One 10: e0114945.   DOI
12 Yucel S, Terzioglu P, Ozcimen D. 2012. Lipase applications in biodiesel production, pp. 209-250. In Fang Z (ed.). Biodiesel - Feedstocks, Production and Applications. InTech, Croatia.
13 Mhetras NC, Bastawde KB, Gokhale DV. 2009. Purification and characterization of acidic lipase from Aspergillus niger NCIM 1207. Bioresour. Technol. 100: 1486-1490.   DOI
14 Kotogan A, Kecskemeti A, Szekeres A, Papp T, Chandrasekaran M, Kadaikunnan S, et al. 2016. Characterization of transesterification reactions by Mucoromycotina lipases in non-aqueous media. J. Mol. Catal. B Enzym. 127: 47-55.   DOI
15 Hasan F, Shah AA, Hameed A. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39: 235-251.   DOI
16 Sharma D, Sharma B, Shukla AK. 2011. Biotechnological approach of microbial lipase: a review. Biotechnology 10: 23-40.   DOI
17 Singh AK, Mukhopadhyay M. 2012. Overview of fungal lipase: a review. Appl. Biochem. Biotechnol. 166: 486-520.   DOI
18 Rodrigues RC, Fernandez-Lafuente R. 2010. Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process. J. Mol. Catal. B Enzym. 64: 1-22.   DOI
19 Kotogan A, Nemeth B, Vagvolgyi C, Papp T, Tako M. 2014. Screening for extracellular lipase enzymes with transesterification capacity in Mucoromycotina strains. Food Technol. Biotechnol. 52: 73-82.
20 Mateos Diaz JC, Rodriguez JA, Roussos S, Cordova J, Abousalham A, Carriere F, Baratti J. 2006. Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme Microb. Technol. 39: 1042-1050.   DOI
21 Chattopadhyay M, Banik AK, Raychaudhuri S. 1999. Production and purification of lipase by a mutant strain of Rhizopus arrhizus. Folia Microbiol. 44: 37-40.   DOI
22 Yasuda M, Ogino H, Kiguchi T, Kotani T, Takakura S, Ishibashi T, et al. 1999. Purification and characterization of lipase from Rhizopus chinensis cells. J. Biosci. Bioeng. 88: 571-573.   DOI
23 Sun SY, Xu Y. 2008. Solid-state fermentation for 'whole-cell synthetic lipase' production from Rhizopus chinensis and identification of the functional enzyme. Process Biochem. 43: 219-224.   DOI
24 Suzuki M, Yamamoto H, Mizugaki M. 1986. Purification and general properties of a metal-insensitive lipase from Rhizopus japonicus NR 400. J. Biochem. 100: 1207-1213.   DOI
25 Sun SY, Xu Y, Wang D. 2009. Novel minor lipase from Rhizopus chinensis during solid-state fermentation: biochemical characterization and its esterification potential for ester synthesis. Bioresour. Technol. 100: 2607-2612.   DOI
26 Sun SY, Xu Y. 2009. Membrane-bound 'synthetic lipase' specifically cultured under solid-state fermentation and submerged fermentation by Rhizopus chinensis: a comparative investigation. Bioresour. Technol. 100: 1336-1342.   DOI
27 Haas MJ, Cichowicz DJ, Bailey DG. 1992. Purification and characterization of an extracellular lipase from the fungus Rhizopus delemar. Lipids 27: 571-576.   DOI
28 Kohno M, Kugimiya W, Hashimoto Y, Morita Y. 1994. Purification, characterization and crystallization of two types of lipases from Rhizpous niveus. Biosci. Biotechnol. Biochem. 58: 1007-1012.   DOI
29 Hiol A, Jonzo MD, Rugani N, Druet D, Sarda L, Comeau LC. 2000. Purification and characterization of an extracellular lipase f rom a t hermophilic Rhizopus oryzae strain isolated from palm fruit. Enzyme Microb. Technol. 26: 421-430.   DOI
30 Kantak JB, Prabhune AA. 2012. Characterization of smallest active monomeric lipase from novel Rhizopus strain: application in transesterification. Appl. Biochem. Biotechnol. 166: 1769-1780.   DOI
31 Monteiro JB, Nascimento MG, Ninow JL. 2003. Lipasecatalyzed synthesis of monoacylglycerol in a homogeneous system. Biotechnol. Lett. 25: 641-644.   DOI
32 Ben Salah R, Mosbah H, Fendri A, Gargouri A, Gargouri Y, Mejdoub H. 2006. Biochemical and molecular characterization of a lipase produced by Rhizopus oryzae. FEMS Microbiol. Lett. 260: 241-248.   DOI
33 Wu XY, Jaaskelainen S, Linko YY. 1996. Purification and partial characterization of Rhizomucor miehei lipase for ester synthesis. Appl. Biochem. Biotechnol. 59: 145-158.   DOI
34 Gulyamova KA, Davranov KD. 1995. Properties of two lipases from the fungus Mucor miehei. Chem. Nat. Compd. 31: 372-375.
35 Noel M, Combes D. 2003. Effects of temperature and pressure on Rhizomucor miehei lipase stability. J. Biotechnol. 102: 23-32.   DOI
36 Reetz MT, Zonta A, Simpelkamp J. 1996. Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials. Biotechnol. Bioeng. 49: 527-534.   DOI
37 Namboodiri VM, Chattopadhyaya R. 2000. Purification and biochemical characterization of a novel thermostable lipase from Aspergillus niger. Lipids 35: 495-502.   DOI
38 Ulker S, Karaoglu SA. 2012. Purification and characterization of an extracellular lipase from Mucor hiemalis f. corticola isolated from soil. J. Biosci. Bioeng. 114: 385-390.   DOI
39 Saxena RK, Agarwal L, Meghwanshi GK. 2005. Diversity of fungal and yeast lipases: present and future scenario for the 21st century, pp. 791-814. In Satyanarayana T, Johri BN (eds.). Microbial Diversity: Current Perspectives and Potential Applications. I. K. International Publishing House Pvt Ltd, New Delhi.
40 Yu XW, Wang LL, Xu Y. 2009. Rhizopus chinensis lipase: gene cloning, expression in Pichia pastoris and properties. J. Mol. Catal. B Enzym. 57: 304-311.   DOI
41 Hiol A, Jonzo MD, Druet D, Comeau L. 1999. Production, purification and characterization of an extracellular lipase from Mucor hiemalis f. hiemalis. Enzyme Microb. Technol. 25: 80-87.   DOI
42 Koblitz MGB, Pastore GM. 2006. Purification and biochemical characterization of an extracellular lipase produced by a new strain of Rhizopus sp. Cienc. Agrotec. 30: 494-502.   DOI
43 Markweg-Hanke M, Lang S, Wagner F. 1995. Dodecanoic acid inhibition of a lipase from Acinetobacter sp. OPA 55. Enzyme Microb. Technol. 17: 512-516.   DOI
44 Iftikhar T, Niaz M, Jabeen R, Haq IU. 2011. Purification and characterization of extracellular lipases. Pak. J. Bot. 43: 1541-1545.
45 Huang Y, Locy R, Weete JD. 2004. Purification and characterization of an extracellular lipase from Geotrichum marinum. Lipids 39: 251-257.   DOI
46 Noel M, Combes D. 2003. Rhizomucor miehei lipase: differential scanning calorimetry and pressure/temperature stability studies in presence of soluble additives. Enzyme Microb. Technol. 33: 299-308.   DOI
47 Salis A, Monduzzi M, Solinas V. 2007. Use of lipases for the production of biodiesel, pp. 317-339. In Polaina J, Maccabe AP (eds.). Industrial Enzymes. Structure, Function and Applications. Springer Netherlands, Dordrecht.
48 Li Z, Li X, Wang Y, Wang Y, Wang F, Jiang J. 2011. Expression and characterization of recombinant Rhizopus oryzae lipase for enzymatic biodiesel production. Bioresour. Technol. 102: 9810-9813.   DOI
49 Ruiz C, Falcocchio S, Xoxi E, Pastor FJ, Diaz P, Saso L. 2004. Activation and inhibition of Candida rugosa and Bacillusrelated lipases by saturated fatty acids, evaluated by a new colorimetric microassay. Biochim. Biophys. Acta 1672: 184-191.   DOI
50 Razak CN, Salleh AB, Musani R, Samad MY, Basri M. 1997. Some characteristics of lipases from thermophilic fungi isolated from palm oil mill effluent. J. Mol. Catal. B Enzym. 3: 153-159.   DOI
51 Toida J, Arikawa Y, Kondou K, Fukuzawa M, Sekiguchi J. 1998. Purification and characterization of triacylglycerol lipase from Aspergillus oryzae. Biosci. Biotechnol. Biochem. 62: 759-763.   DOI