Browse > Article
http://dx.doi.org/10.1007/s11814-018-0146-1

An organofunctionalized MgO∙SiO2 hybrid support and its performance in the immobilization of lipase from Candida rugosa  

Kolodziejczak-Radzimska, Agnieszka (Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology)
Zdarta, Jakub (Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology)
Ciesielczyk, Filip (Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology)
Jesionowski, Teofil (Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology)
Publication Information
Korean Journal of Chemical Engineering / v.35, no.11, 2018 , pp. 2220-2231 More about this Journal
Abstract
Lipase from Candida rugosa was immobilized on $MgO{\cdot}SiO_2$ hybrid grafted with amine, thiol, cyano, phenyl, epoxy and carbonyl groups. The products were analyzed using Fourier transform infrared spectroscopy, nuclear magnetic resonance, low-temperature $N_2$ sorption and elemental analysis. Additionally, the degree of coverage of the oxide material surface with different functional groups and the number of surface functional groups were estimated. The Bradford method was used to determine the quantity of immobilized enzyme. The largest quantity of enzyme (25-28 mg/g) was immobilized on the hybrid functionalized with amine and carbonyl groups. On the basis of hydrolysis reaction of p-nitrophenyl palmitate to p-nitrophenol, it was determined how the catalytic activity of the obtained biocatalysts is affected by pH, temperature, storage time, and repeated reaction cycles. The best results for catalytic activity were obtained for the lipase immobilized on $MgO{\cdot}SiO_2$ hybrids with amine and carbonyl groups. The biocatalytic system demonstrated activity above 40% in the pH range 4-10 and in the temperature range $30-70^{\circ}C$. Lipase immobilized on the $MgO{\cdot}SiO_2$ systems with amine and epoxy groups retains, respectively, around 80% and 60% of its initial activity after 30 days of storage, and approximately 60-70% after 10 reaction cycles.
Keywords
Hybrid Oxide Materials; Surface Grafting; Lipase from Candida rugosa; Enzyme Immobilization; Enzymatic Activity and Stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Ciesielczyk, A. Krysztafkiewicz and T. Jesionowski, Appl. Surf. Sci., 253, 8435 (2007).   DOI
2 M. M. Bradford, Anal. Biochem., 7, 248 (1976).
3 K. Siwinska-Stefanska, F. Ciesielczyk, M. Nowacka and T. Jesionowski, J. Nanomater., 2012, Article ID 316173, 19 (2012), doi: 10.1155/2012/316173.   DOI
4 J. Zdarta, K. Salek, A. Kolodziejczak-Radzimska, K. Siwinska-Stefanska, K. Szwarc-Rzepka, M. Norman, L. Klapiszewski, P. Bartczak, E. Kaczorek and T. Jesionowski, Open. Chem., 13, 138 (2015).
5 F. Ciesielczyk, P. Bartczak, J. Zdarta and T. Jesionowski, J. Environ. Manage., 204, 123 (2017).   DOI
6 P. C. Ma, J. K. Kim and B. Z. Tang, Carbon, 44, 3232 (2006).   DOI
7 A. Natalello, D. Ami, S. Brocca, M. Lotti and S. M. Doglia, Biochem. J., 385, 511 (2005).   DOI
8 T. Raghavendra, A. Basak, L. Manocha, A. Shah and D. Madamwar, Bioresour. Technol., 140, 103 (2013).   DOI
9 F. Ciesielczyk, M. Nowacka, A. Przybylska and T. Jesionowski, Colloids Surf., A: Physicochem. Eng. Aspects, 376, 21 (2011).   DOI
10 A. Kolodziejczak-Radzimska, J. Zdarta and T. Jesionowski, Biotechnol. Progr., 34, 767 (2018).   DOI
11 J. Zdarta, L. Klapieszewski, M. Wysokowski, M. Norman, A. Kolodziejczak-Radzimska, D. Moszynski, H. Ehrlich, H. Maciejewski, A. L. Stelling and T. Jesionowski, Mar. Drugs, 13, 2424 (2015).   DOI
12 K. Banjanac, M. Mihailovic, N. Prlainovic, M. Corovic, M. Carevic, A. Marinkovic and D. Bezbradic, J. Chem. Technol. Biotechnol., 91, 2654 (2016).   DOI
13 X. Liu, Y. Fang, X. Yang, Y. Li and C. Wang, Chem. Eng. J., 336, 456 (2018).   DOI
14 K. Li, Y. Fan, Y. He, L. Zeng, X. Han and Y. Yan, Scientific Reports, 7, 1 (2017).   DOI
15 C. Gunathilake and M. Jaroniec, J. Mater. Chem., 4, 10914 (2016).   DOI
16 H. Takahashi, B. Li, T. Sasaki, C. Miyazaki, T. Kajino and S. Inagaki, Chem. Mater., 12, 3301 (2000).   DOI
17 S. G. Hong, B. C. Kim, H. B. Na, J. Lee, J. Youn, S. W. Chung, C. W. Lee, B. Lee, H. S. Kim, E. Hsiao, S. H. Kim, B. G. Kim, H. G. Park, H. N. Chang, T. Hyeon, J. S. Dordick, J. W. Grate and J. Kim, Chem. Eng. J., 322, 510 (2017).   DOI
18 A. Straksys, T. Kochane and S. Budriene, Food Chem., 211, 294 (2016).   DOI
19 M. Khoobi, S. F. Motevalizadeh, Z. Asadgol, H. Forootanfar, A. Shafiee and M. A. Faramarzi, Biochem. Eng. J., 88, 131 (2014).   DOI
20 L. Klapiszewski, J. Zdarta and T. Jesionowski, Colloids Surf., B: Biointer., 162, 90 (2018).   DOI
21 D. N. Tran and K. J. Balkus, ACS Catal., 1, 956 (2011).   DOI
22 Z. Zhou and M. Hartmann, Top. Catal., 55, 1081 (2012).   DOI
23 H. H. Weetall, Methods Enzymol., 44, 134 (1976).
24 M. Hartmann and X. Kostrov, Chem. Soc. Rev., 42, 6277 (2013).   DOI
25 L. Cao, Carrier-bound immobilized enzymes: principles, application and design, Wiley, New York (2006).
26 C. Mateo, J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan and R. Fernandez-Lafuente, Enzyme Microb. Technol., 40, 1451 (2007).   DOI
27 Y. Kuwahara, T. Yamanishi, T. Kamegawa, K. Mori and H. Yamashita, ChetCatChem, 5, 2527 (2013).   DOI
28 J. Zdarta, A. S. Meyer, T. Jesionowski and M. Pinelo, Catalysts, 8, 92 (2018).   DOI
29 M. Hartmann and X. Kostrov, Chem. Soc. Rev., 42, 6277 (2013).   DOI
30 K. Kato, R. Irimescu, T. Saito, Y. Yokogawa and H. Takahashi, Biosci., Biotechnol., Biochem., 67, 203 (2003).   DOI
31 D. Goradia, J. Cooney, B. K. Hodnett and E. Magner, J. Mol. Catal. B-Enzym., 32, 231 (2005).   DOI
32 J. Forde, A. Vakurov, T. D. Gibson, P. Millner, M. Whelehan, I. W. Marison and C. O’Fagain, J. Mol. Catal. B-Enzym., 32, 231 (2005).   DOI
33 F. Hoffman, M. Cornelius, J. Morell and M. Froba, Angew. Chem. Int. Ed. Engl., 45 3216 (2006).   DOI
34 T. Jesionowski, J. Zdarta and B. Krajewska, Adsorption, 20, 801 (2014).   DOI
35 B. Zhao, X. Liu, Y. Jiang, L. Zhou, Y. He and J. Gao, Appl. Biochem. Biotechnol., 173, 1802 (2014).   DOI
36 Y. Wan and D. Y. Zhao, Chem. Rev., 107, 2821 (2007).   DOI
37 E. Magner, Chem. Soc. Rev., 42, 6213 (2013).   DOI
38 S. S. Tukel and O. Alptekin, Process Biochem., 39, 2149 (2004).   DOI
39 G. Ozyilmaz, S. S. Tukel and O. Alptekin, J. Mol. Catal. B-Enzym., 35, 154 (2005).   DOI
40 M. Hartmann and D. Jung, J. Mater. Chem., 20, 844 (2010).   DOI
41 S. Hudson, J. Cooney and E. Magner, Angew. Chem. Int. Ed. Eng., 47, 8582 (2008).   DOI
42 N. H. Abdallah, M. Schlumpberger, D. A. Gaffney, J. P. Hanrahan, J. M. Tobin and E. Magner, J. Mol. Catal. B-Enzym., 108, 82 (2014).   DOI
43 W. Liu and L. N. Wei, J. Mol. Catal., 30, 182 (2016).
44 P. Zucca and E. Sanjust, Molecules, 19, 14139 (2014).   DOI
45 D. M. Liu, J. Chen and Y. P. Shi, Trends Anal. Chem., 102, 332 (2018).   DOI
46 X. Y. Wang, G. Tian, N. Jiang and B. L. Su, Energy Environ. Sci., 5, 5540 (2012).   DOI
47 W. Xie and J. Wang, Energy Fuels, 28, 2624 (2014).   DOI
48 Q. Y. Li, P. Y. Wang, Y. L. Zhou, Z. R. Nie and Q. Wei, J. Sol-Gel Sci. Technol., 78, 523 (2016).   DOI
49 Z. Chen, L. Liu, X. Wu and R. Yang, RSC Adv., 6, 108583 (2016).   DOI
50 W. Xie and X. Zang, Food Chem., 257, 15 (2018).   DOI
51 W. Xie and M. Huang, Energy Convers. Manage., 159, 42 (2018).   DOI
52 M. Heidanzadeh, E. Doustkhah, S. Rostamnia, P. F. Rezaei, F. D. Harzevili and B. Zeynizadeh, Int. J. Biol. Macromol., 101, 696 (2017).   DOI
53 L. S. Wan, B. B. Ke and Z. K. Xu, Enzyme Microb. Technol., 42, 332 (2008).   DOI
54 W. Xie and X. Zang, Food Chem., 227, 397 (2017).   DOI
55 L. Klapiszewski, J. Zdarta, K. Antecka, K. Synoradzki, K. SiwinskaStefanska, D. Moszynski and T. Jesionowski, Appl. Surf. Sci., 422, 94 (2018).
56 W. Xie and X. Zang, Food Chem., 194, 1283 (2016).   DOI
57 J. Zdarta, K. Antecka, A. Jedrzak, K. Synoradzki, M. Luczak and T. Jesionowski, Colloids Surf., B: Biointer., 169, 118 (2018).   DOI
58 F. Ciesielczyk, J. Goscianska, J. Zdarta and T. Jesionowski, Colloids Surf., A: Physicochem. Eng. Aspects, 545, 39 (2018).   DOI
59 M. W. Ambrogio, C. R. Thomas, Y. L. Zhao, J. L. Zink and J. F. Stodart, Acc. Chem. Res., 44, 903 (2011).   DOI
60 Y. T. Zhu, X. Y. Ren, Y. M. Liu, Y. Wei and L. S. Qiang, Mater. Sci. Eng., 38, 278 (2014).   DOI
61 Z. Lei, X. Liu, L. Ma, D. Liu, H. Zhong and Z. Wang, RSC Adv., 5, 38665 (2015).   DOI
62 F. Ciesielczyk, A. Krysztafkiewicz and T. Jesionowski, J. Mater. Sci., 42, 3831 (2007).   DOI
63 T. Jesionowski and A. Krysztafkiewicz, Appl. Surf. Sci., 172, 18 (2001).   DOI
64 T. Jesionowski and A. Krysztafkiewicz, J. Non-Cryst. Solids, 277, 45 (2000).   DOI