• Title/Summary/Keyword: pH-sensitive

Search Result 917, Processing Time 0.031 seconds

Synthesis and pH-Dependent Micellization of a Novel Block Copolymer Containing s- Triazine Linkage

  • Pal Ravindra R.;Lee Doo Sung
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.373-384
    • /
    • 2005
  • Novel pH-sensitive moieties containing an s-triazine ring were synthesized with sulfonamide and secondary amino groups. The synthesized pH-sensitive moieties were used for the synthesis of a pH-sensitive amphiphilic ABA triblock copolymer. The pH-sensitive triblock copolymer was composed of diblock copolymers, methoxy poly(ethylene glycol)-poly ($\varepsilon$-caprolactone-co-D,L-lactide) (MPEG-PCLA), and pH-sensitive moiety. These copolymers could be dissolved molecularly in both acidic and basic aqueous media at room temperature due to secondary amino and sulfonamide groups. The synthesized s-triazine rings containing pH-sensitive compounds were characterized by ${^1}H-NMR,\;{^13}C-NMR$, and LC/MSD spectral data. The synthesized diblock and triblock copolymers were also characterized by ${^1}H-NMR$ and GPC analyses. The critical micelle concentrations at various pH conditions were determined by fluorescence technique using pyrene as a probe. Furthermore, the micellization and demicellization study of the triblock copolymer was done with pH-sensitive groups. The sensitivity towards pH change was further established by acid-base titration.

Synthesis and pH-Dependent Micellization of Sulfonamide-Modified Diblock Copolymer

  • Pal Ravindra R.;Kim Min Sang;Lee Doo Sung
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.467-476
    • /
    • 2005
  • The main objective of this study was to develop and characterize pH-sensitive biodegradable polymeric materials. For pH-sensitivity, we employed three kinds of moieties: 2-amino-3-(lH-imidazol-4-yl)-propionic acid (H), N-[4-( 4,6-dimethyl-pyrimidin-2ylsulfamoyl)-phenyl]succinamic acid (SM), and 2- {3-[ 4-( 4,6-dimethyl-pyrim­idin- 2-ylsulfamoyl)-phenylcarbamoyl]-propionylamino} -3-(3 H - imidazol-4-yl)-propionic acid (SH). The pH -sensitive diblock copolymers were synthesized by ring opening polymerization and coupling reaction from poly(ethylene glycol) (MPEG), $\varepsilon$-caprolactone (CL), D,L-lactide (LA) and pH-sensitive moieties. The pH-sensitive SH molecule was synthesized in a two-step reaction. The first step involved the synthesis of SHM, a methyl ester derivative of SH, by coupling reaction of SM and L-histidine methyl ester dihydrochloride, whereas the second step involved the hydrolysis of the same. The synthesized SM, SHM and SH molecules were characterized by FTIR, $^{1}H$-NMR and $^{13}C$-NMR spectroscopy, whereas diblock copolymers and pH-sensitive diblock copolymer were characterized by $^{1}H$-NMR and GPC analysis. The critical micelle concentrations were determined at various pH conditions by fluorescence technique using pyrene as a probe. The micellization and demicellization studies of pH-sensitive diblock copolymers were also done at different pH conditions. The pH-sensitivity was further established by acid-based titration and DLS analysis.

pH-Sensitive Curdlan Acetate Microspheres를 이용한 Indomethacin의 방출 특성

  • Lee, Chang-Mun;Lee, Yeong-Jin;Lee, Gi-Yeong;Choe, Chun-Sun
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.739-742
    • /
    • 2003
  • Curdlan acetate was prepared from hydrophilic curdlan by chemical modification and it was used for pH-sensitive drug delivery system. Curdlan acetate microspheres were prepared by the solvent evaporation method. The size of the curdlan acetate microspheres was below $200\;{\mu}m$. The drug loading efficiency of microspheres was approximately 58.44%. In the swelling test, curdlan acetate microspheres were showed pH-sensitive behavior. The swelling capacity of microspheres at pH 7.4 was much greater than at pH 1.4. Also, Release rate of indomethacin (IND) at pH 7.4 from curdlan acetate microspheres was faster than that at pH 1.4. A pH-sensitive drug release pattern was due to the disintegrating after swelling.

  • PDF

Effect of pH on PAH Transport in Brush Border Basolateral Membrane Vesicles of Rabbit Proximal Tubule (가토 신장 근위세뇨관의 Brush Border 및 Basolateral Membrane Vesicle에서 PAH 이동에 미치는 pH의 영향)

  • Kim, Yong-Keun;Woo, Jae-Suk;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.281-293
    • /
    • 1988
  • The effect of pH on the rate of PAH uptake was studied in rabbit renal basolateral membrane vesicles (BLMV) and brush border membrane vesicles (BBMV). In the absence of Na in incubation medium, a decrease in external $pH(pH_0)$ led to an increase in probenecid-sensitive PAH uptake by BLMV. In the presence of Na, the probenecid-sensitive PAH uptake was unaltered when the $pH_0$ decreased from 8.0 to 6.0 but further decrease in $pH_0$ to 5.5 increased significantly the uptake. The probenecid-sensitive PAH uptake was not affected by an alteration in pH per se in the absence of a pH gradient with or without the presence of Na. However, the presence of Na stimulated the probenecid-sensitive PAH uptake in all pH ranges tested over that measured in the absence of Na. A similar pattern of pH dependence on the PAH uptake was observed in BBMV but the presence of Na did not alter the probenecid-sensitive PAH uptake in the presence and absence of a pH gradient. Kinetic analysis for BLMV showed that Na or pH gradient increased Vmax of the probenecid-sensitive PAH uptake without a change in Km value. These results suggest that PAH is transported by $OH^-/PAH$ exchange process in the luminal membrane, but the pH dependence in the BLMV is not unequivocally consistent with an anion exchange process. The PAH transport is dependent on Na in BLMV but not in BBMV.

  • PDF

Use of Bacteriocin Produced by Lactococcus sp. CU216 with pH Sensitive Liposome Entrapment (Lactococcus sp. CU216이 생산하는 박테리오신을 함유한 pH Sensitive Liposome의 응용)

  • 박성수;김명희;한경식;오세종
    • Food Science of Animal Resources
    • /
    • v.24 no.1
    • /
    • pp.97-102
    • /
    • 2004
  • The objective of this study was to control Kimchi fermentation using pH sensitive bacteriocin entrapping liposome(bacteriocin-liposome). The liposomes were prepared by the reverse-phase evaporation method from a mixture of DPPC(dipalmitoyl phosphatidylcholine, DPPE(dipalmitoyl phosphatidylethanolamine), DOPC(dioleoyl phosphatidylcholine) and cholesterol in a molar ration of 4:2:1:4. The bacteriocin-liposome was disruptured at pH 4 of buffer and was stable at alkaline pHs(6 and 7). Irrespective of the addition of the bacteriocin-liposomes, the pH of every Kimchi sample decreased to 5 during 5 days storage at 5$^{\circ}C$. Kimchi samples treated with bacteriocin-liposomes maintained pH 4 or higher, while Kimchi samples not treated with bacteriocin-liposomes exhibited pH 3.58 or lower. In general, the pH of Kimchi samples stored at 20$^{\circ}C$ decreased faster, compared to that of Kimchi samples stored at 5$^{\circ}C$. The pH of Kimchi samples treated with the bacteriocin-liposomes was 3.9 during 90 days storage, while that of the samples not treated with the bacteriocin-liposomes was 3.68 and 3.32 during 30 days and 90 days storages, respectively. Lactic acid bacteria in Kimchi treated with the bacteriocin-liposome grew relatively slow at 5$^{\circ}C$. The viable cell number of lactic acid bacteria increased up to 4${\times}$10$\^$7/ cells/ml and then decreased to 8${\times}$10$\^$6/ cells/ml during 90 days storage at 5$^{\circ}C$.

Modulation of Poly($\beta-amino ester$) pH-Sensitive Polymers by Molecular Weight Control

  • Kim Min Sang;Lee Doo Sung;Choi Eun-Kyung;Park Heon-Joo;Kim Jin-Seok
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.147-151
    • /
    • 2005
  • The main objective of this study was to modulate pH-sensitive polymers (poly($\beta-amino esters$)) by controlling their molecular weight during their synthesis. These pH-sensitive and biodegradable polymers were synthesized by Michael-type step polymerization. 1,4-Butane diol diacrylate was used as the unsaturated carbonyl compound and piperazine as the nucleophilic compound. Various molecular weight polymers were obtained by varying the mol ratio of piperazine/1,4-butane diol diacrylate. The synthesized polymers were characterized by $^{1}H-NMR$ and their molecular weights were measured by gel permeation chromatography(GPC). The dependence of the molecular weight on the mol ratio was evaluated by the titration method. Also, the pH dependent turbidity of the polymers was determined by UV-Vis spectrophotometry. This pH dependent property of the polymers could be very useful for preparing drug carriers that are sensitive to pH.

Effect of pH-Sensitive P(MAA-co-PEGMA) Hydrogels on Release and Stability of Albumin (pH 감응성 P(MAA-co-PEGMA) 수화젤이 알부민의 방출과 안정성에 미치는 영향)

  • Yang, Juseung;Kim, Bumsang
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.262-268
    • /
    • 2013
  • pH-sensitive P(MAA-co-PEGMA) hydrogel particles were prepared and their feasibility as smart delivery carriers for cosmetic ingredients was evaluated. P(MAA-co-PEGMA) hydrogel particles having an average size of approx. $2{\mu}m$ were synthesized via dispersion photopolymerization. There was a drastic change in the swelling ratio of P(MAA-co-PEGMA) particles at a pH of around 5 due to the ionization of MAA in the hydrogel and as the amount of MAA in the hydrogel increased, the swelling ratio increased at a pH above 5. The P(MAA-co-PEGMA) hydrogel particles showed a pH-sensitive release behavior. Thus, at pH 4 almost none of the albumin permeated through the skin while at pH 6 relatively high skin permeability was obtained. The albumin loaded in the P(MAA-co-PEGMA) hydrogel particles was hardly degraded in the presence of pepsin and its stability was maintained.

pH-Sensitivity Control of PEG-Poly(${\beta}$-amino ester) Block Copolymer Micelle

  • Hwang, Su-Jong;Kim, Min-Sang;Han, Jong-Kwon;Lee, Doo-Sung;Kim, Bong-Sup;Choi, Eun-Kyung;Park, Heon-Joo;Kim, Jin-Seok
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.437-442
    • /
    • 2007
  • Poly(ethylene glycol) methyl ether (PEG)-poly(${\beta}$-amino ester) (PAE) block copolymers were synthesized using a Michael-type step polymerization, and the construction of pH-sensitive polymeric micelles (PM) investigated. The ${\beta}$-amino ester block of the block copolymers functioned as a pH-sensitive moiety as well as a hydrophobic block in relation to the ionization of PAE, while PEG acted as a hydrophilic block, regardless of ionization. The synthesized polymers were characterized using $^1H-NMR$, with their molecular weights measured using gel permeation chromatography. The $pK_b$ values of the pH-sensitive polymers were measured using a titration method. The pH-sensitivity and critical micelle concentration (CMC) of the block copolymers in PBS solution were estimated using fluorescence spectroscopy. The pH dependent micellization behaviors with various bisacrylate esters varied within a narrow pH range. The critical micelle concentration at pH 7.4 decreased from 0.032 to 0.004 mg/mL on increasing the number of methyl group in the bisacrylate from 4 to 10. Also, the particle size of the block copolymer micelles was determined using dynamic light scattering (DLS). The DLS results revealed the micelles had an average size below 100 nm. These pH-sensitive polymeric micelles may be good carriers for the delivery of an anticancer drug.

Preparation and pH-Sensitive Release Behavior of Alginate/Activated Carbon Composite Magnetic Hydrogels

  • Han, Min-Hee;Yun, Ju-Mi;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.122-126
    • /
    • 2010
  • The alginate-based hydrogel was prepared as a pH-sensitive drug delivery system. To enhance the drug loading capacity, activated carbon was introduced as a drug absorbent. The iron oxide was incorporated into the alginate matrix for the magnetic transferring to the target organ. The activated carbon and iron-oxide were dispersed uniformly in the alginate hydrogel. The drug release from the alginate/activated carbon composite hydrogel was carried out in various pH conditions with vitamin B12 and Lactobacillus lamnosers as model drugs. The fast and sustainable release of drug was observed in the basic condition due to the pH-sensitive solubility of alginate. The novel drug delivery system having pH-sensitive release property and magnetic movement to target place was developed by using the alginate/activated carbon composite magnetic hydrogels.

pH-Sensitive Release of Indomethacin from Curdlan Acetate Microspheres (Curdlan Acetate Microspheres를 이용한 Indomethacin의 pH 민감성 방출)

  • Lee Chang-Moon;Lee Young-Jin;Kim Hyung-Ju;Park Hee-Jung;Lee Ki-Young
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.46-49
    • /
    • 2005
  • Curdlan, a natural $\beta-1,3-glucan,$ has been studied as drug carrier due to its unique properties including its thermal gelling characters. In this study, curdlan was chemically acetylated for pH-sensitive drug delivery. Curdlan acetate microspheres(CAMs) were prepared by the solvent evaporation method. The size of the CAMs was below $200{\mu}m.$ The drug loading efficiency of microspheres was approximately $58.44\%$. In the swelling test, the CAMs showed pH-sensitive behavior. The swelling capacity of microspheres at pH 7.4 was much greater than at pH 1.4. Also, release rate of indomethacin(IND) at pH 7.4 from the CAMs was faster than that at pH 1.4. Therefore the CAMs have potential for the controlled release of IND over an extended period of time.