Use of Bacteriocin Produced by Lactococcus sp. CU216 with pH Sensitive Liposome Entrapment

Lactococcus sp. CU216이 생산하는 박테리오신을 함유한 pH Sensitive Liposome의 응용

  • 박성수 (Princeton 대학교 물리학과) ;
  • 김명희 (한국식품개발연구) ;
  • 한경식 (고려대학교 식품과학) ;
  • 오세종 (전남대학교 동물자원학부 농업과학기술연구소)
  • Published : 2004.03.01

Abstract

The objective of this study was to control Kimchi fermentation using pH sensitive bacteriocin entrapping liposome(bacteriocin-liposome). The liposomes were prepared by the reverse-phase evaporation method from a mixture of DPPC(dipalmitoyl phosphatidylcholine, DPPE(dipalmitoyl phosphatidylethanolamine), DOPC(dioleoyl phosphatidylcholine) and cholesterol in a molar ration of 4:2:1:4. The bacteriocin-liposome was disruptured at pH 4 of buffer and was stable at alkaline pHs(6 and 7). Irrespective of the addition of the bacteriocin-liposomes, the pH of every Kimchi sample decreased to 5 during 5 days storage at 5$^{\circ}C$. Kimchi samples treated with bacteriocin-liposomes maintained pH 4 or higher, while Kimchi samples not treated with bacteriocin-liposomes exhibited pH 3.58 or lower. In general, the pH of Kimchi samples stored at 20$^{\circ}C$ decreased faster, compared to that of Kimchi samples stored at 5$^{\circ}C$. The pH of Kimchi samples treated with the bacteriocin-liposomes was 3.9 during 90 days storage, while that of the samples not treated with the bacteriocin-liposomes was 3.68 and 3.32 during 30 days and 90 days storages, respectively. Lactic acid bacteria in Kimchi treated with the bacteriocin-liposome grew relatively slow at 5$^{\circ}C$. The viable cell number of lactic acid bacteria increased up to 4${\times}$10$\^$7/ cells/ml and then decreased to 8${\times}$10$\^$6/ cells/ml during 90 days storage at 5$^{\circ}C$.

발효식품의 후산발효를 조절하기 위하여 pH sensitive liposome의 이용 가능을 검토하였다. Lactococcm sp. CU216이 생산하는 박테리오신은 L.. acidophilus를 제외하고는 대부분의 유산균주들에 생육억제 효과가 있는 것으로 확인되었으며, 이를 Octyl-Sepharose column으로 분획하여 정제하였다. 정제된 박테리오신을 dipalmitoyl phosphocholine, dipalmitoyl phosphoethanolamine, dioleoyl phosphocholine 및 콜레스테롤를 각각 4:2:1:4(㏖ ratio)의 비율로 섞은 liposome을 제조하여 최종적으로 pH sensitive bacteriocin-liposome을 제조하였다. 이렇게 제조된 liposome은 pH 4부근에서 대부분 유리되는 것으로 확인되었으나 pH 6이상에서는 일어나지 않았다. 또한 pH sensitive bacteriocin-liposome 한국의 전통 발효식품인 김치에 적용하여 저장시 pH의 저하를 억제시키는 것으로 확인되었다. 본 실험 결과, pH sensitive bacteriocin-liposome은 발효식품의 후산발효 억제에 적용될 수 있으며 추후에 요구르트를 포함한 다른 발효식품에 대한 추가적인 실험이 필요한 것으로 생각되었다.

Keywords

References

  1. Akashi, K. I., Miyata, H., Itoh, H., and Kinosita, K. (1996) Preparation of giant liposomes in physiological conditions and characterization under an optical microscope. Biophy. J. 71, 3242-3250 https://doi.org/10.1016/S0006-3495(96)79517-6
  2. Bangharn, A. D., Standish, M .M, and Watkis, J. C. (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Bioi. 13, 238-252 https://doi.org/10.1016/S0022-2836(65)80093-6
  3. Choi, M. H. and Park, Y. H. (1998) Inhibition of lactic acid bacteria in Kimchi fermentation by nisin. J. Microbiol. Biotechnol. 8, 547-551
  4. Han, K. S., Oh, S. J., Moon, Y. I., and Kim, S. H. (2002) Antimicrobial effects of a bacteriocin mixture from lactic acid bacteria against foodbome pathogens. Kor. J. Food Sci. Ani. Resour. 22, 164-171
  5. Jack, R W., Tagg, J. R., and Ray, B.(1995) Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59, 171-200
  6. Kim, W. J. (1993) Bacteriocins of lactic acid bacteria: Their potentials as food biopreservative. Food Rev. IntI. 9, 299-313 https://doi.org/10.1080/87559129309540961
  7. Klaenhammer, T. R. (1993) Genetics of bacteriocins produced by lactic acid bacteria FEMS Microbiol. Rev. 12, 39-86 https://doi.org/10.1103/PhysRev.12.39
  8. Lee, C. W., Ko, C. Y., and Ha, D. M. (1992) MicrofloraJ changes of the lactic acid bacteria during Kimchi fennentation and identification of the isolates. Kor. J Appl. Microbiol. Biotechnol. 20, 102-109
  9. Lee, J. S., Jung, M. C., Kim, W. S., Lee, K. C, Kim, H. J., Park, C. S., Lee, H. J., Joo, Y. J., Lee, K J., Ahn, J. S., Park, W., Park, Y.. H., and Mheen, T. I. (1996) Identification of lactic acid bacteria from Kimchi by cellular FAMEs analysis. Kor. J Appl. Microbiol. Biotechnol. 24, 234-241
  10. Montville, T. J., and Kaiser, A. L. (1993) Antimicrobial proteins: classification, nomenclature, diversity, and relationship to bacteriocins. In Bacteriocins of lactic acid bacteria, Hoover, D. G. and Steenson, L. R.(eds.), Academic Press, NY, pp. 1-22
  11. Oh, S., Churey, J. J., and Worobo, R. W. (1999) Inhibitory activity of Alicyclobacillus strains by bacteriocin of Lactococcus sp. CU216. Abstracts, Annual Meeting of Institute of Food Technologists, Chicago, USA
  12. Oh, S., Kim, S., and Worobo, R. W. (2000). Characterization and purification of a bacteriocin produced by Lactobacillus acidophilus 30SC: Human isolate for potential use as a probiotic strains. J. Dairy Sci. 83, 2747-2752
  13. Olson, F., Hunt, C. A., Szoka, F. C., Vail, W. J., and Papahadjopoulos, D. (1979) Preparation of liposomes of defmed size of distribution by extrusion through polycarbonate membranes. Biochim. Biophys. Acta. 557, 9-2 https://doi.org/10.1016/0005-2736(79)90085-3
  14. Perrie, Y., Frederik, P. M., and Gregoriadis, G. (2001) Liposome-mediated DNA vaccination: the effect of vesicle composition. Vaccine 19, 3301-3310 https://doi.org/10.1016/S0264-410X(00)00432-1
  15. Siebert, S. T. A., Reeves, S. G., and Durst, R. A. (1993) Liposome immunomigration field assay device for alachlor determination. Anal. Chim. Acta. 282, 297-305 https://doi.org/10.1016/0003-2670(93)80214-6
  16. Tagg, J. R., Dajani, A. S., and Wannamaker, L. W. (1976) Bacteriocins of Gram-positive bacteria Bacteriol. Rev. 40, 722-756
  17. Weinbrenner, D. R., Barefoot, S. F., and Grinstead, D. A. (1997) Inhibition of yogurt starter cultures by jenseniin G, a Propionibacterium bacteriocin. J. Dairy Sci. 80, 1246-1253 https://doi.org/10.3168/jds.S0022-0302(97)76053-3