pH-Sensitivity Control of PEG-Poly(${\beta}$-amino ester) Block Copolymer Micelle

  • Hwang, Su-Jong (Department of Polymer Science & Engineering, Sungkyunkwan University) ;
  • Kim, Min-Sang (Department of Polymer Science & Engineering, Sungkyunkwan University) ;
  • Han, Jong-Kwon (Department of Polymer Science & Engineering, Sungkyunkwan University) ;
  • Lee, Doo-Sung (Department of Polymer Science & Engineering, Sungkyunkwan University) ;
  • Kim, Bong-Sup (Polymer Technology Institute, Sungkyunkwan University) ;
  • Choi, Eun-Kyung (Department of Radiation Oncology, University of Ulsan) ;
  • Park, Heon-Joo (Department of Microbiology, College of Medicine, Inha University) ;
  • Kim, Jin-Seok (College of Pharmacy, Sookmyung Women's University)
  • Published : 2007.08.31

Abstract

Poly(ethylene glycol) methyl ether (PEG)-poly(${\beta}$-amino ester) (PAE) block copolymers were synthesized using a Michael-type step polymerization, and the construction of pH-sensitive polymeric micelles (PM) investigated. The ${\beta}$-amino ester block of the block copolymers functioned as a pH-sensitive moiety as well as a hydrophobic block in relation to the ionization of PAE, while PEG acted as a hydrophilic block, regardless of ionization. The synthesized polymers were characterized using $^1H-NMR$, with their molecular weights measured using gel permeation chromatography. The $pK_b$ values of the pH-sensitive polymers were measured using a titration method. The pH-sensitivity and critical micelle concentration (CMC) of the block copolymers in PBS solution were estimated using fluorescence spectroscopy. The pH dependent micellization behaviors with various bisacrylate esters varied within a narrow pH range. The critical micelle concentration at pH 7.4 decreased from 0.032 to 0.004 mg/mL on increasing the number of methyl group in the bisacrylate from 4 to 10. Also, the particle size of the block copolymer micelles was determined using dynamic light scattering (DLS). The DLS results revealed the micelles had an average size below 100 nm. These pH-sensitive polymeric micelles may be good carriers for the delivery of an anticancer drug.

Keywords

References

  1. V. P. Torchilin, J. Control. Release, 73, 137 (2001) https://doi.org/10.1016/S0168-3659(01)00247-4
  2. G. S. Kwon and K. Kataoka, Adv. Drug. Del. Rev., 16, 295 (1995)
  3. K. E. Ulhrich, S. M. Cannizzaro, R. S. Langer, and K. M. Shakesheff, Chem. Rev., 99, 3181 (1999)
  4. R. Annette, W. M. Guido, Vandermeulen, and K. HarmAnton, Adv. Drug. Del. Rev., 53, 95 (2001) https://doi.org/10.1016/S0169-409X(01)00236-8
  5. M. Yokoyama, Biorelated polymers and gels, T. Okano, Ed., San Diego, Academic Press, 1998, p. 193
  6. M. C. Jones and J. C. Leroux, Eur. J. Pharm. Biopharm., 48, 101 (1999)
  7. A. V. Kavanov, V. P. Chekhonin, V. Y. Alakhov, E.V. Batrakova, A. S. Lebedev, N. S. Melik Nubranov, S. A. Arzhakov, A. V. Levashov, G. V. Morozov, E. S. Severin Kabanov, and V. A. Kabanov, FEBS Lett., 258, 343 (1989)
  8. Z. Ding, C. J. Long, Y. Hayashi, E. V. Bulmus, A. S. Hoffman, and P. S. Stayton, Bioconjug. Chem., 10, 395 (1999) https://doi.org/10.1021/bc980108s
  9. B. Jeong, Y. H. Bae, D. S. Lee, and S. W. Kim, Nature, 338, 860 (1997)
  10. K. S. Soppimath, A. R. Kulkarni, and T. M. Aminabhavi, J. Control. Release, 75, 331 (2001) https://doi.org/10.1016/S0168-3659(01)00358-3
  11. M. Lugo and N. A. Peppas, Macromolecules, 32, 6646 (1999)
  12. L. Yao and S. Krause, Macromolecules, 36, 2055 (2003)
  13. G. Filipcsei, J. Feher, and M. Zrinyi, J. Mol. Struct., 554, 109 (2000)
  14. S. I. Kang and Y. H. Bae, J. Control. Release, 80,145 (2002)
  15. J. Taillefer, M. C. Jones, N. Brasseur, J. E. Vanlier, and J. C. Leroux, J. Pharm. Sci., 89, 52 (2000)
  16. S. R. Tonge and B. J. Tighe, Adv. Drug. Deliv. Rev., 53, 109 (2001) https://doi.org/10.1016/S0169-409X(01)00236-8
  17. N. Murthy, J. R. Robichaud, D. A. Tirrell, P. S. Stayton, and A. S. Hoffman, J. Control. Release, 61, 137 (1999)
  18. A. S. Lee, V. Butun, M. Vamvakaki, S. P. Armes, J. A. Pople, and A. P.Gast, Macromolecules, 35, 8540 (2002) https://doi.org/10.1021/ma011278u
  19. J. Gohy, B. G. G. Lohmeijer, S. K. Varshney, B. Decamps, E. Leroy, S. Boileau, and U. S. Schubert, Macromolecules, 35, 9748 (2002) https://doi.org/10.1021/ma011278u
  20. M. S. Kim, S. J. Hwang, J. K. Han, E. K. Choi, H. J. Park, J. S. Kim, and D. S. Lee, Macromol. Rapid. Commun., 27, 447 (2006)
  21. Y. S. Bae, W. D. Jang, N. Nishiyama, S. Fukushima, and K. Kataoka, Mol. Biosyst., 1, 242 (2005) https://doi.org/10.1039/b505899f
  22. M. S. Kim, E. K. Choi, H. J. Park, J. S. Kim, and D. S. Lee, Macromol. Res., 13, 147 (2005)
  23. R. R. Pal and D. S. Lee, Macromol. Res., 13, 373 (2005)