• Title/Summary/Keyword: p21CIP1

Search Result 122, Processing Time 0.031 seconds

Enhancement of Tumor Response by MEK Inhibitor in Murine HCa-I Tumors (C3H/HeJ 마우스 간암에서 MEK 억제제에 의한 방사선 감수성 향상 효과)

  • Kim, Sung-Hee;Seong, Jin-Sil
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.207-215
    • /
    • 2003
  • Purpose: Extracellular signal-regulated kinase (ERK), which is part of the mitogen-activated protin kinase cascade, opposes initiation of the apoptotic cell death which is programmed by diverse cytotoxic stimuli. In this regard, the inhibition of ERK may be useful in improving the therapeutic efficacy of established anticancer agents. Materials and Methods: Murine hepatocarcinoma, HCa-I is known to be highly radioresistant with a TCD50 (radiation dose yield in $50\%$ cure) of more than 80 Gy. Various anticancer drugs have been found to enhance the radioresponse of this particular tumor but none were successful. The objective of this study was to explore whether the selective inhibition of MEK could potentiate the antitumor efficacy of radiation in vivo, particularly in the case on radioresistant tumor. C3H/HeJ mice hearing $7.5\~8\;mm$ HCa-I, were treated with PD98059(intratumoral injection of $0.16\;\mug/50\;\mul$). Results: Downregulation on ERK by PD98059 was most prominent 1h after the treatment. In the tumor growth delay assay, the drug was found to Increase the effect of the tumor radioresponse with an enhancement factor (EF) of 1.6 and 1.87. Combined treatment of 25 Gy radiation with PD98059 significantly increased radiation induced apoptosis. The peak apoptotic index (number on apoptotic nuclei in 1000 nuclei X100) was $1.2\%$ in the case of radiation treatment alone, $0.9\%$ in the case of drug treatment alone and $4.9\%,\;5.3\%$ in the combination treatment group. An analysis of apoptosis regulating molecules with Western blotting showed upregulation of p53, p$p21^{WAF1/CIP1}\;and\;Bcl-X_s$ in the combination treatment group as compared to their levels in either the radiation alone or drug alone treatment groups. The level of other molecules such as $Bcl-X_L4, Bax and Bcl-2 were changed to a lesser extent. Conclusion: The selective inhibition of MEK in combination with radiation therapy may have potential benefit in cancer treatment.

Induction of G2/M Arrest of the Cell Cycle by Genistein in Human Bladder Carcinoma and Leukemic Cells (인체 방광암 및 백혈병세포에서 genistein에 의한 세포주기 G2/M arrest 유발에 관한 연구)

  • Kim, Eu-Kyum;Myong, You-Ho;Song, Kwan-Sung;Lee, Ki-Hong;Rhu, Chung-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.589-597
    • /
    • 2006
  • Genistein, a natural isoflavonoid phytoestrogen, is a strong inhibitor of protein tyrosine kinase and DNA topoisomerase activities. There are several studies documenting molecular alterations leading to cell cycle arrest and induction of apoptosis by genistein as a chemopreventive agent in a variety of cancer cell lines; however, its mechanism of action and its molecular targets on human bladder carcinoma and leukemic cells remain unclear. In the present study, we have addressed the mechanism of action by which genistein suppressed the proliferation of T24 bladder carcinoma and U937 leukemic cells. Genistein significantly inhibited the cell growth and induced morphological changes, and induced the G2/M arrest of the cell cycle in both T24 and U937 cells with a relatively stronger cytotoxicity in U937. The G2/M arrest in T24 cells was associated with the inhibition of cyclin A, cyclin B1 and Cdc25C protein expression without alteration of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21(WAF1/CIP1). However, the inhibitory effects of genistein on the cell growth of U937 cells were connected with a marked inhibition of cyclin B1 and an induction of Cdk inhibitor p21 proteins by p53-independent manner. These data suggest that genistein may exert a strong anticancer effect and additional studies will be needed to evaluate the different mechanisms between T24 and U937 cells.

Cadmium Induces Cell Cycle Arrest and Change in Expression of Cell Cycle Related Proteins in Breast Cancer Cell Lines

  • Lee Young Joo;Kang Tae Seok;Kim Tae Sung;Moon Hyun Ju;Kang Il Hyun;Oh Ji Young;Kwon Hoonjeong;Han Soon Young
    • Toxicological Research
    • /
    • v.21 no.1
    • /
    • pp.77-85
    • /
    • 2005
  • Cadmium is an environmental pollutant exposed from contaminated foods or cigarette smoking and known to cause oxidative damage in organs. We investigated the cadmium-induced apoptosis and cell arrest in human breast cancer cells, MCF-7 cells and MDA-MB-231 cells. Obvious apoptotic cell death was shown in CdCl₂ 100 μM treatment for 12 hr, which were determined by DAPI staining and flow cytometric analysis. In cell cycle analysis, MCF-7 cells and MDA-MB-231 cells were arrested in S phase and G2/M phase respectively. These could be explained by the induction of cell cycle inhibitory protein, p21/sup Waf1/Cip1/ and p27/sup Kip1/, expression and reduction of cyclin/Cdk complexes in both cell lines. The decreased expression of cyclin A and Cdk2 in MCF-7 cells and cyclin B1 and Cdc2 in MDA-MB-231 cells were consistent with the flow cytometric observation. p-ERK expression was increased dose-dependent manner in both cell lines. It suggests that ERK MAPK pathway are involved in cadmium-induced cell cycle arrest and apoptosis. Moreover, cotreatment of zinc (100 μM, 12 hr) recovered the cadmium-induced cell arrest in both cells, which shows cadmium-induced oxidative stress mediates apoptosis and cell cycle arrest in human breast cancer cells.

Induction of Apoptosis by Vitamin E Succinate in Human Erythroleukemia K562 Cells (인간 만성백혈병 세포주에서의 Vitamin E Succinate에 의한 세포사멸 유도)

  • Jang, Chang-Deug;Kim, Jong-Myoung;An, Won-Geun;Park, Hye-Ryoun
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.896-904
    • /
    • 2007
  • Regulation mechanism of apoptosis has been known to be important for understanding the pathogenesis of a number of human diseases including cancers. The effects of $RRR-{\alpha}-tocopheryl$ succinate(vitamin E succinate, VES) on the cell viability, generation of ROS, expression of proteins involved in apoptosis, and growth of human chronic myelogenous leukemia K562 cells were analyzed in this study. VES treatment not only induced the generation of the ROS but also increased the levels of $NF-{\kappa}B$, COX-2, and $p21^{WAF1/CIP1}$ in K562 cells. It modulates the levels of pro-apoptotic proteins such as Bax provoking the apoptosis in K562 cells. The cleavage of PARP into 89 kDa was also increased upon VES treatment in a dosage-dependent manner. Induction of an apoptosis was evident by the increase of sub-Gl peak and cell shrinkage condensed chromatin in K562 cells treated with VES. It also resulted in an inhibition of tumor growth by 50% and prolonged survival of the Iymphoma-induced mice. This potentiation of VES obtained in vitro and in vivo may indicate the feasibility of more effective chemotherapy in chronic myelogenous leukemia.

Induction of Apoptosis by Samgibopae-tang in Human Non-small-cell Lung Cancer Cells (인체폐암세포 NCI-H460 및 A549의 증식에 미치는 삼기보폐탕의 영향 비교)

  • Heo, Man-Kyu;Park, Cheol;Choi, Young-Hyun;Kam, Cheol-Woo;Park, Dong-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.973-981
    • /
    • 2007
  • In the present study, we investigated the antiproliferative activity of the water extract of Samgibopae-tang (SGBPT) in NCI-H460 and A549 non-small-cell lung cancer cell lines. We found that exposure of A549 cells to SGBPT resulted in the growth inhibition in a dose-dependent manner as measured by MTT assay, however SGBPT did not affect the growth of NCI-H460 cells. The antiproliferative effect by SGBPT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. SGBPT treatment did not induce the cell cycle arrest in both cell lines, however the frequency of sub-G1 population was concentration-dependently increased by SGBPT treatment in A549 cells. SGBPT treatment partially induced the expression of tumor suppressor p53 in A549 cells and the expression of cyclin-dependent kinase inhibitor p21(WAF1/CIP1) was markedly increased in both transcriptional and translational levels in A549 cells. The up-regulation of p21 by SGBPT occurred in a similar a concentration dependent manner to that observed with the inhibition of cell viability and induction of sub-G1 population of the cell cycle. However SGBPT treatment did not affect other growth regulation-related genes such as early growth response-1 (Egr-1), nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), inducible nitric oxide synthease (iNOS), cyclooxygenases (COXs), telomere-regulatory factors in A549 as well as NCI-H460 cells. Taken together, these findings suggested that SGBPT-induced inhibition of human lung carcinoma A549 cell growth was aoosciated with the induction of p21 and the results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of SGBPT.

Studies on Expression of Cell Cycle Related Genes in HL-60 Cells Undergoing Apoptosis by the Methanol Extract of Hedyotis diffusa (백화사설초 메탄올 추출물에 의한 HL-60 세포(細胞) 고사과정(枯死過程)에서의 cell cycle 관련인자(關聯因子)의 활성변화(活性變化) 연구(硏究))

  • Han, Se-Hee;Lee, Jong-Bum;Moon, Gu;Moon, Suk-Jae;Won, Jin-Hee;Park, Lae-Gil;Lee, Jong-Deok
    • THE JOURNAL OF KOREAN ORIENTAL ONCOLOGY
    • /
    • v.6 no.1
    • /
    • pp.99-111
    • /
    • 2000
  • Objectives: Hedyotis diffusa is used to treat cancer in traditional Korea Medicine. So this study was carried out to examine the expression of cell cycle related genes in HL-60 cells undergoing apoptosis by the methanol extract of Hedyotis diffusa. Methods: 1. HL-60 cells were treated with various concentrations (from 200 to $50{\mu}g/ml$)of methanol extract and H20 extract ($200{\mu}g/ml$) of hedyotis diffusa. After 48 h later, the cells were tested for viability by MTT assay. 2. The HL-60 cells were treated with $200{\mu}g/ml$ of methanol extract for the indicated periods. The whole cell lysates were prepared and analyzed by western blotting using anti-p53 antibody. 3. The nuclear extract were prepared and analyzed by western blotting using anti-p21 antibody, anti-p27 antibody, anti-cyclin A antibody, anti-cyclin E antibody and anti-CDK2 antibody. Results: 1. The methanol extract of Hedyotis diffusa induced the death of HL-60 cells in a dose dependent manner. 2. The methanol extract of Hedyotis diffusa makedly decreased the level of p21/Cipl and cyclin A in a time dependent manner. 3. The methanol extract of Hedyotis diffusa markedly increased the level of p27/Kipl and cyclin E in a time dependent manner. 4. The methanol extract of Hedyotis diffusa markedly did not affect the level of CDK2. Conclusions: These results provide evidence that expression of cell cycle related genes in HL-60 cells undergoing apoptosis by the methanol extract of Hedyotis diffusa mainly results from decreased level of p21/Cipl and increased level of p27/Kipl of the cell cycle related genes.

  • PDF

Induction of Cell Cycle Arrest at G2/M phase by Ethanol Extract of Scutellaria baicalensis in Human Renal Cell Carcinoma Caki-1 Cells (황금 에탄올 추출물에 의한 인간 신장암 세포주 Caki-1의 G2/M arrest 유발)

  • Park, Dong-Il;Jeong, Jin-Woo;Park, Cheol;Hong, Su-Hyun;Shin, Soon-Shik;Choi, Sung-Hyun;Choi, Yung-Hyun
    • Herbal Formula Science
    • /
    • v.23 no.2
    • /
    • pp.199-208
    • /
    • 2015
  • Objectives : In the present study, we investigated the effects of ethanol extract of Scutellaria baicalensis (EESB) on the progression of cell cycle in human renal cell carcinoma Caki-1 cells. Methods : The effects of EESB on cell growth and apoptosis induction were evaluated by trypan blue dye exclusion assay and flow cytometry, respectively. The mRNA and protein levels were determined by Western blot analysis and reverse transcription-polymerase chain reaction, respectively. Results : It was found that EESB treatment on Caki-1 cells resulted in a dose-dependent inhibition of cell growth and induced apoptotic cell death as detected by Annexin V-FITC staining. The flow cytometric analysis indicated that EESB resulted in G2/M arrest in cell cycle progression which was associated with the down-regulation of cyclin A expression. Our results also revealed that treatment with EESB increased the mRNA and proteins expression of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21(WAF1/CIP1), without any noticeable changes in cyclin B1, Cdk2 and Cdc2. In addition, the incubation of cells with EESB resulted in a significant increase in the binding of p21 and Cdk2 and Cdc2. These findings suggest that EESB-induced G2/M arrest and apoptosis in Caki-1 cells is mediated through the p53-mediated upregulation of Cdk inhibitor p21. Conclusions : Taken together, these findings suggest that EESB may be a potential chemotherapeutic agent and further studies will be needed to identify the biological active compounds that confer the anti-cancer activity of S. baicalensis.

Anti-proliferative Effects by Aqueous Extract of Cordyceps Militaris in Human Leukemic U937 Cells (동충하초 추출물에 의한 U937 인체 백혈병 세포의 성장억제 효과)

  • Park, Dong-Il;Seo, Sang-Ho;Choi, Yung-Hyun;Hong, Sang-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.452-458
    • /
    • 2005
  • Cordyceps militaris is a medicinal fungus, which has been used for patient suffering from cancer in Oriental medicine. It was reported previously that C. militaris extracts are capable of inhibiting tumor growth, however, the anti-poliferative effects of human cancer cells have not been poorly understood. In this study, to elucidate the growth inhibitory mechanisms of human cancer cells by treatment of aqueous extract of C. militaris (AECM) we investigated the anti-proliferative effects of AECM in human leukemia U937 cell line. AECM treatment inhibited the growth of U937 cells and induced the apoptotic cell death in a concentration-dependent manner, which was associated with morphological changes. We observed the up-regulation of cyclin-dependent kinase (Cdk) inhibitor p21(WAF1/CIP1) by p53-independent manner and activation of caspase-3 in AECM-treated U937 cells, however, the activity of caspase-9 was remained unchanged. Additionally, AECM treatment caused a dose-dependent inhibition of the expression of telomere regulatory gene products such as human telomere reverse transcriptase (hTERT) and telomerase-associated protein-1 (TEP-1). Taken together, these findings suggest that AECM-induced inhibition of human leukemic cell proliferation is associated with the induction of apoptotic cell death via modulation of several major growth regulatory gene products, and C. militaris may have therapeutic potential in human lung cancer.

Inhibitory Effects of Luteolin Isolated from Ixeris sonchifolia Hance on the Proliferation of HepG2 Human Hepatocellular Carcinoma Cells

  • Yee, Su-Bog;Lee, Jung-Hwa;Chung, Hae-Young;Im, Kwang-Sik;Bae, Song-Ja;Choi, Jae-Soo;Kim, Nam-Deuk
    • Archives of Pharmacal Research
    • /
    • v.26 no.2
    • /
    • pp.151-156
    • /
    • 2003
  • We investigated the anti-proliferative effects of luteolin and apigenin, isolated from Ixeris sonchifolia Hance, on HepG2 human hepatocellular carcinoma cells. In MTT assay luteolin showed more efficient anti-proliferative effects on cells than apigenin did. According to propidium iodide staining and flow cytometry studies, we postulated that these effects might be a result of cell cycle arrest. Hence we examined the changes of protein expressions related to cell cycle arrest. Western blotting data demonstrated that the down-regulated expression of CDK4 was correlated to the increase of p53 and CDK inhibitor $p21^{WAF1/CIP1}$ protein. These data suggest that luteolin may have potential as an anti-cancer agent.

β-Sitosterol Induced Growth Inhibition is Associated with Up-regulation of Cdk Inhibitor p21WAF1/CIP1 in Human Colon Cancer Cells (β-Sitosterol에 의한 인체 대장암 HCT116 세포의 증식억제에 관한 연구)

  • Choi, Yung-Hyun;Kim, Young-Ae;Park, Cheol;Choi, Byung-Tae;Lee, Won-Ho;Hwang, Kyung-Mi;Jung, Keun-Ok;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • $\beta$-Sitosterol is the major phytosterol in higher plants, including fruits and vegetables. The molecule has been shown to have the potential for prevention and therapy for human cancer. We investigated the effects of $\beta$-sitosterol on the cell proliferation of HCT116 human colon cancer cells in order to understand its anti-proliferative mechanism. $\beta$-Sitosterol treatment resulted in the inhibition of cell proliferation in a concentration-dependent manner. The anti-proliferative effect of HCT116 cells by $\beta$-sitosterol was associated with formation of apoptotic bodies and degradation of $\beta$-catenin protein. In addition, $\beta$-sitosterol-treatment induced a marked accumulation of tumor suppressor p53 and a concomitant induction of cyclin-dependent kinase (Cdk) inhibitor p21 without alteration in the levels of cyclins and Cdks. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of $\beta$-sitosterol.