Browse > Article

Induction of Apoptosis by Samgibopae-tang in Human Non-small-cell Lung Cancer Cells  

Heo, Man-Kyu (Department of Oriental Medicine, Graduate School, Dong-Eui University)
Park, Cheol (Department of Oriental Medicine, Graduate School, Dong-Eui University)
Choi, Young-Hyun (Department of Oriental Medicine, Graduate School, Dong-Eui University)
Kam, Cheol-Woo (Department of Oriental Medicine, Graduate School, Dong-Eui University)
Park, Dong-Il (Department of Oriental Medicine, Graduate School, Dong-Eui University)
Publication Information
Journal of Physiology & Pathology in Korean Medicine / v.21, no.4, 2007 , pp. 973-981 More about this Journal
Abstract
In the present study, we investigated the antiproliferative activity of the water extract of Samgibopae-tang (SGBPT) in NCI-H460 and A549 non-small-cell lung cancer cell lines. We found that exposure of A549 cells to SGBPT resulted in the growth inhibition in a dose-dependent manner as measured by MTT assay, however SGBPT did not affect the growth of NCI-H460 cells. The antiproliferative effect by SGBPT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. SGBPT treatment did not induce the cell cycle arrest in both cell lines, however the frequency of sub-G1 population was concentration-dependently increased by SGBPT treatment in A549 cells. SGBPT treatment partially induced the expression of tumor suppressor p53 in A549 cells and the expression of cyclin-dependent kinase inhibitor p21(WAF1/CIP1) was markedly increased in both transcriptional and translational levels in A549 cells. The up-regulation of p21 by SGBPT occurred in a similar a concentration dependent manner to that observed with the inhibition of cell viability and induction of sub-G1 population of the cell cycle. However SGBPT treatment did not affect other growth regulation-related genes such as early growth response-1 (Egr-1), nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), inducible nitric oxide synthease (iNOS), cyclooxygenases (COXs), telomere-regulatory factors in A549 as well as NCI-H460 cells. Taken together, these findings suggested that SGBPT-induced inhibition of human lung carcinoma A549 cell growth was aoosciated with the induction of p21 and the results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of SGBPT.
Keywords
Samgibopae-tang; non-small-cell lung cancer cells; NCI-H460; A549 p21;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 李梴. 醫學入門. 서울, 남산당, p 212, 213, 1980
2 전국한의과대학 폐계내과학교실편저. 동의폐계내과학. 서울, 한문화사, p 87, 526, 2002
3 박봉규, 박동일. 천금위경탕의 인체 폐암 세포 증식억제에 관한 연구. 동의생리병리학회지 18(4):1147-1153, 2004
4 Arends, M.J., Morris, R.G., Wyllie, A.H. Apoptosis. The role of the endonuclease. Am. J. Pathol. 136: 593-608, 1990
5 Zhan, Q., Fan, S., Bae, I., Guillouf, C., Liebermann, D.A., OConnor, P.M., Fornace, A.J. Jr. Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis. Oncogene. 9: 3743-3751, 1994
6 Tsujimoto, Y. Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria. Genes Cells. 3: 697-707, 1998   DOI   ScienceOn
7 Salvesen, G.S., Duckett, C.S. IAP proteins: blocking the road to death's door. Nat. Rev. Mol. Cell. Biol. 3: 401-410, 2002   DOI   ScienceOn
8 LaCasse, E.C., Baird, S., Korneluk, R.G., MacKenzie, A.E. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene. 17: 3247-3259, 1998   DOI   ScienceOn
9 Giercksky, K.E. COX-2 inhibition and prevention of cancer. Best Pract. Res. Clin. Gastroenterol. 15: 821-833, 2001   DOI
10 Liu, C., Rangnekar, V.M., Adamson, E., Mercola, D. Suppression of growth and transformation and induction of apoptosis by EGR-1. Cancer Gene Ther 5: 3-28, 1998
11 Huang, R.P., Fan, Y., de Belle, I., Niemeyer, C., Gottardis, M.M., Mercola, D., Adamson, E.D. Decreased Egr-1 expression in human, mouse and rat mammary cells and tissues correlates with tumor formation. Int J Cancer 72: 102-109, 1997   DOI   ScienceOn
12 Li, P.X., Wong, J., Ayed, A., Ngo, D., Brade, A.M., Arrowsmith, C., Austin, R.C., Klamut, H.J. Placental transforming growth factor-$\beta$ is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression. J Biol Chem 275: 20127-20135, 2000   DOI   ScienceOn
13 Koff, A., Giordano, A., Desai, D., Yamashita, K., Harper, J.W., Elledge, S., Nishimoto, T., Morgan, D.O., Franza, B.R., Roberts, J.M. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257: 1689-1694, 1992   DOI
14 Sawaoka, H., Tsuji, S., Tsujii, M., Gunawan, E.S., Sasaki, Y., Kawano, S., Hori, M. Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo. Lab Invest 79: 1469-1477, 1999
15 Cerni, C. Telomeres, telomerase, and myc. An update. Mutat Res 462: 31-47, 2000   DOI   ScienceOn
16 oole, J.C., Andrews, L.G., Tollefsbol, T.O. Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT). Gene. 269: 1-12, 2001   DOI
17 Shi. L., Nishioka, W.K., Th'ng, J., Bradbury, E.M., Litchfield, D.W., Greenberg, A.H. Premature p34cdc2 activation required for apoptosis. Science. 263: 1143-1145, 1994   DOI
18 Holcik, M., Gibson, H., Korneluk, R.G. XIAP: apoptotic brake and promising therapeutic target. Apoptosis. 6: 253-261, 2001   DOI   ScienceOn
19 Surh, Y.J., Chun, K.S., Cha, H.H., Han, S.S., Keum, Y.S., Park, K.K., Lee, S.S. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-$\kappa$B activation. Mutat. Res. pp 243-268, 480-481, 2001
20 Evans, V.G. Multiple pathways to apoptosis. Cell Biol. Int 17: 461-476, 1993   DOI   ScienceOn
21 Thun, M.J., Henley, S.J., Patrono, C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J. Natl. Cancer Inst. 94: 252-266, 2002   DOI   ScienceOn
22 Vainio, H. Is COX-2 inhibition a panacea for cancer prevention? Int J Cancer 94: 613-614, 2001   DOI   ScienceOn
23 김영환. 분자생물학적 측면에서의 폐암의 발생. 녹십자의보, 27(3):152-157, 1999
24 Baek, S.J., Kim, J.S., Nixon, J.B., DiAugustine, R.P., Eling, T.E. Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1. J Biol Chem. 279: 6883-6892, 2004   DOI   ScienceOn
25 이성열, 김원일, 박동일. 길경이 인체 폐암세포에 미치는 영향에 대한 실험적 연구. 동의생리병리학회지 17(4):1019-1030, 2003
26 Morgan, D.O. Principles of CDK regulation. Nature 374: 131-134, 1995
27 홍수현, 박철, 홍상훈, 최병태, 이용태, 박동일, 최영현. 어성초 메탄올 추출물에 의한 A549 인체 폐암세포 사멸유도에 관한 연구. 동의생리병리학회지 20(6):1584-1592, 2006   과학기술학회마을
28 Turini, M.E., DuBois, R.N. Cyclooxygenase-2: a therapeutic target. Annu. Rev. Med. 53: 35-57, 2002   DOI   ScienceOn
29 de Belle, I., Huang, R.P., Fan, Y., Liu, C., Mercola, D., Adamson, E.D. p53 and Egr-1 additively suppress transformed growth in HT1080 cells but Egr-1 counteracts p53-dependent apoptosis. Oncogene 18: 3633-3642, 1999   DOI   ScienceOn
30 Zeng, Y.X., el-Deiry, W.S. Regulation of p21WAF1/CIP1 expression by p53-independent pathways. Oncogene 12: 1557-1564, 1996
31 Xiong, Y., Hannon, G., Zhang, H., Casso, D., Kobayashi, R., Beach, D. p21 is a universal inhibitor of cyclin kinases. Nature 366: 701-704, 1993   DOI   ScienceOn
32 Cheng, J.Q., Jiang, X., Fraser, M., Li, M., Dan, H.C., Sun, M., Tsang, B.K. Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer: possible involvement of the phosphoinositide-3 kinase/Akt pathway. Drug Resist. Update. 5: 131-146, 2002   DOI   ScienceOn
33 Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K., Elledge, S.J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805-816, 1993   DOI   ScienceOn
34 해리슨 내과학 편찬위원회. 해리슨 내과학. 서울, 정담 출판사, pp 1317-1324, 1997
35 Kyo, S., Inoue, M. Complex regulatory mechanisms of telomerase activity in normal and cancer cells: How can we apply them for cancer therapy. Oncogene. 21: 688-697, 2002   DOI   ScienceOn
36 Baek, S.J., Kim, K.S., Nixon, J.B., Wilson, L.C., Eling, T.E. Cyclooxygenase inhibitors regulate the expression of a TGF-$\beta$ superfamily member that has proapoptotic and antitumorigenic activities. Mol Pharmacol 59: 901-908, 2001   DOI
37 Huang, R.P., Liu, C., Fan, Y., Mercola, D., Adamson, E.D. Egr-1 negatively regulates human tumor cell growth via the DNA-binding domain. Cancer Res 55: 5054-5062, 1995
38 이은우, 김영철 역. 머크 매뉴얼. 서울, 한우리, p 702, 2667, 2002
39 Chiarugi, V., Magnelli, L., Gallo, O. Cox-2, iNOS and p53 as play-makers of tumor angiogenesis. Int. J. Mol. Med. 2: 715-719, 1998
40 Virolle, T., Adamson, E.D., Baron, V., Birle, D., Mercola, D., Mustelin, T., de Belle, I. The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol 3: 1124-1128, 2001   DOI   ScienceOn
41 Nagata, S. Apoptosis by death factor. Cell. 88: 355-365, 1997   DOI   ScienceOn
42 Fabian, D., Koppel, J., Maddox-Hyttel, P. Apoptotic processes during mammalian preimplantation development. Theriogenology 64: 221-231, 2005   DOI   ScienceOn
43 Tan, M., Wang, Y., Guan, K., Sun, Y. PTGF-$\beta$, a type beta transforming growth factor (TGF-$\beta$) superfamily member, is a p53 target gene that inhibits tumor cell growth via TGF-$\beta$ signaling pathway. Proc Natl Acad Sci USA 97: 109-114, 2000
44 임재형, 김훈, 변미권, 감철우, 박동일. 인체폐암세포의 증식 및 prostaglandin E2 생성에 미치는 청조구폐탕의 영향에 관한 연구. 동의생리병리학회지 20(4):966-972, 2006   과학기술학회마을
45 Baek, S.J., Wilson, L.C., Eling, T.E. Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53. Carcinogenesis 23: 425-434, 2002   DOI   ScienceOn
46 Eling, T.E., Baek, S.J., Shim, M., Lee, C.H. NSAID activated gene (NAG-1), a modulator of tumorigenesis. J Biochem Mol Biol 39: 649-655, 2006   DOI
47 Yamamoto, Y., Gaynor, R.B. Therapeutic potential of inhibition of the NF-${\kappa}B$ pathway in the treatment of inflammation and cancer. J Clin Invest 107: 135-142, 2001   DOI   ScienceOn
48 Miyashita, T., Reed, J.C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 80: 293-299, 1995   DOI   ScienceOn
49 El-Deiry, W.S., Harper, J.W., O'Connor, P.M., Velculescu, V.E., Canman, C.E., Jackman, J., Pietenpol, J.A., Burrell, M., Hill, D.E., Wang, Y., Wiman, K.G., Mercer, W.E., Kastan, M.B., Kohn, K.W., Elledge, S.J., Kinzler, K.W., Vogelstain, B. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54: 1169-1174, 1994
50 Kluck, R.M., Bossy-Wetzel, E., Green, D.R., Newmeyer, D.D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 275: 1132-1136, 1997   DOI   ScienceOn
51 Dempke, W., Rie, C., Grothey, A., Schmoll, H.J. Cyclooxygenase-2: a novel target for cancer chemotherapy? J Cancer Res Clin Oncol 127: 411-417, 2001   DOI   ScienceOn
52 許俊. 東醫寶鑑. 서울, 법인문화사, p 1433, 1996
53 조인주, 감철우, 김기탁, 박동일. 인체폐암세포에서 Bcl-2 발현저하 및 caspase 활성을 통한 청조구폐탕의 apoptosis 유발에 관한 연구. 동의생리병리학회지 21(1):93-97, 2007   과학기술학회마을
54 Reed, J.C. Bcl-2 family proteins. Oncogene. 17: 3225-3236, 1998   DOI   ScienceOn
55 Chiarugi, V., Magnelli, L., Basi, G. Apoptosis and the cell cycle. Cell. Mol. Biol. Res. 40: 603-612, 1994
56 Calogero, A., Arcella, A., de Gregorio, G., Porcellini, A., Mercola, D., Liu, C., Lombari, V., Zani, M., Giannini, G., Gagliardi, F.M., Caruso, R., Gulino, A., Frati, L., Ragona, G. The early growth response gene EGR-1 behaves as a suppressor gene that is down-regulated independent of ARF/Mdm2 but not p53 alterations in fresh human gliomas. Clin Cancer Res 7: 2788-2796, 2001
57 윤창열, 김용진. 난경연구집성. 서울, 주민출판사, p 768, 769, 2002