Induction of Cell Cycle Arrest at G2/M phase by Ethanol Extract of Scutellaria baicalensis in Human Renal Cell Carcinoma Caki-1 Cells |
Park, Dong-Il
(Department of Internal Medicine, Dongeui University College of Korean Medicine)
Jeong, Jin-Woo (Anti-Aging Research Center, Dongeui University) Park, Cheol (Department of Molecular Biology, College of Natural sciences & Human Ecology, Dongeui University) Hong, Su-Hyun (Department of Biochemistry, Dongeui University College of Korean Medicine) Shin, Soon-Shik (Department of Formula Sciences, Dongeui University College of Korean Medicine) Choi, Sung-Hyun (Department of Safety & System Management, Korea Lift College) Choi, Yung-Hyun (Anti-Aging Research Center, Dongeui University) |
1 | Gao Z, Huang K, Yang X, Xu H. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta 1999; 1472: 643-650. DOI |
2 | Coqueret O. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 2003; 13:65-70. DOI |
3 | Bohn OL, De las Casas LE, Leon ME. Tumor-to-tumor metastasis: Renal cell carcinoma metastatic to papillary carcinoma of thyroid-report of a case and review of the literature. Head Neck Pathol 2009; 3, 327-330. DOI |
4 | Gao J, Morgan WA, Sanchez-Medina A, Corcoran O. The ethanol extract of Scutellaria baicalensis and the active compounds induce cell cycle arrest and apoptosis including upregulation of p53 and Bax in human lung cancer cells. Toxicol Appl Pharmacol 2011; 254: 221-228. DOI |
5 | Motzer RJ, Bander NH, Nanus DM. Renal-cell carcinoma. N Engl J Med. 1996; 335:865-875. DOI |
6 | Joniau S, Vander Eeckt K, Van Poppel H. The indications for partial nephrectomy in the treatment of renal cell carcinoma. Nat Clin Pract Urol 2006; 3: 198-205. DOI |
7 | Huang Y, Tsang SY, Yao X, Chen ZY. Biological properties of baicalein in cardiovascular system. Curr Drug Targets Cardiovasc Haematol Disord 2005; 5: 177-184. DOI |
8 | Lam TL, Lam ML, Au TK, Ip DT, Ng TB, Fong WP, Wan DC. A comparison of human immunodeficiency virus type-1 protease inhibition activities by the aqueous and methanol extracts of Chinese medicinal herbs. Life Sci 2000; 67: 2889-2896. DOI |
9 | Jung HS, Kim MH, Gwak NG, Im YS, Lee KY, Sohn Y, Choi H, Yang WM. Antiallergic effects of Scutellaria baicalensis on inflammation in vivo and in vitro. J Ethnopharmacol 2012; 141: 345-349. DOI |
10 | Lu Y, Joerger R, Wu C. Study of the chemical composition and antimicrobial activities of ethanolic extracts from roots of Scutellaria baicalensis Georgi. J Agric Food Chem 2011; 59: 10934-10942. DOI |
11 | Woźniak D, Dryś A, Matkowski A. Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix. Nat Prod Res 2015; 29: 1567-1570. DOI |
12 | Waisundara VY, Hsu A, Huang D, Tan BK. Scutellaria baicalensis enhances the anti-diabetic activity of metformin in streptozotocin-induced diabetic Wistar rats. Am J Chin Med 2008; 36: 517-540. DOI |
13 | Burnett BP, Jia Q, Zhao Y, Levy RM. A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation. J Med Food 2007; 10: 442-451. DOI |
14 | Nagai T, Suzuki Y, Tomimori T, Yamada H. Antiviral activity of plant flavonoid, 5,7,4'-trihydroxy-8-methoxyflavone, from the roots of Scutellaria baicalensis against influenza A (H3N2) and B viruses. Biol Pharm Bull 1995; 18: 295-299. DOI |
15 | Shin JW, Kang HC, Shim J, Sohn NW. Scutellaria baicalensis attenuates blood-brain barrier disruption after intracerebral hemorrhage in rats. Am J Chin Med 2012; 40: 85-96. DOI |
16 | Hong GE, Kim JA, Nagappan A, Yumnam S, Lee HJ, Kim EH, Lee WS, Shin SC, Park HS, Kim GS. Flavonoids identified from Korean Scutellaria baicalensis Georgi inhibit inflammatory Signaling by Suppressing Activation of NF-κB and MAPK in RAW 264.7 Cells. Evid Based Complement Alternat Med 2013; 2013: 912031. |
17 | Li C, Fong SY, Mei Q, Lin G, Zuo Z. Influence of mefenamic acid on the intestinal absorption and metabolism of three bioactive flavones in Radix Scutellariae and potential pharmacological impact. Pharm Biol 2014; 52: 291-297. DOI |
18 | He X, Wei Z, Zhou E, Chen L, Kou J, Wang J, Yang Z. Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice. Int Immunopharmacol 2015; 28: 470-476. DOI |
19 | Sgambato A, Cittadini A, Faraglia B, Weinstein IB. Multiple functions of p27(Kip1) and its alterations in tumor cells: a review. J Cell Physiol 2000; 183: 18-27. DOI |
20 | Wang CZ, Li XL, Wang QF, Mehendale SR, Yuan CS. Selective fraction of Scutellaria baicalensis and its chemopreventive effects on MCF-7 human breast cancer cells. Phytomedicine 2010; 17: 63-68. DOI |
21 | Shapiro GI, Edwards CD, Rollins BJ. The physiology of p16(INK4A)-mediated G1 proliferative arrest. Cell Biochem Biophys 2000; 33: 189-197. DOI |
22 | Park KI, Park HS, Kang SR, Nagappan A, Lee DH, Kim JA, Han DY, Kim GS. Korean Scutellaria baicalensis water extract inhibits cell cycle G1/S transition by suppressing cyclin D1 expression and matrixmetalloproteinase-2 activity in human lung cancer cells. J Ethnopharmacol 2011; 133: 634-641. DOI |
23 | Zhang J, Park HS, Kim JA, Hong GE, Nagappan A, Park KI, Kim GS. Flavonoids identified from Korean Scutellaria baicalensis induce apoptosis by ROS generation and caspase activation on human fibrosarcoma cells. Am J Chin Med 2014; 42: 465-483. DOI |
24 | Choi BB, Choi JH, Park SR, Kim JY, Hong JW, Kim GC. Scutellariae radix induces apoptosis in chemoresistant SCC-25 human tongue squamous carcinoma cells. Am J Chin Med 2015; 43: 167-181. DOI |
25 | Errico A, Deshmukh K, Tanaka Y, Pozniakovsky A, Hunt T. Identification of substrates for cyclin dependent kinases. Adv Enzyme Regul 2010; 50: 375-399. DOI |
26 | Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 2013; 140: 3079-3093. DOI |
27 | Erlanson M, Landberg G. Prognostic implications of p27 and cyclin E protein contents in malignant lymphomas. Leuk Lymphoma 2001; 40: 461-470. DOI |
28 | Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 2009; 9: 400-414. DOI |
29 | Sarita Rajender P, Ramasree D, Bhargavi K, Vasavi M, Uma V. Selective inhibition of proteins regulating CDK/cyclin complexes: strategy against cancer-a review. J Recept Signal Transduct Res 2010; 30: 206-213. DOI |
30 | Raleigh JM, O’Connell MJ. The G(2) DNA damage checkpoint targets both Wee1 and Cdc25. J Cell Sci 2000; 113: 1727-1736. |
31 | Boutros R, Dozier C, Ducommun B. The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 2006; 18: 185-191. DOI |
32 | Cuddihy A, O'Connell M. Cell-cycle responses to DNA damage in G2. Int Rev Cytol 2003; 222: 99-140. DOI |
33 | Niida H, Nakanishi M. DNA damage checkpoints in mammals. Mutagenesis 2006; 21: 3-9. |