• Title/Summary/Keyword: p.p.-near-rings

Search Result 21, Processing Time 0.019 seconds

A STUDY ON BAER AND P.P. NEAR-RINGS

  • Cho, Yong-Uk
    • East Asian mathematical journal
    • /
    • v.16 no.1
    • /
    • pp.105-110
    • /
    • 2000
  • Baer rings were introduced by Kaplansky [3] to abstract various properties of rings of operators on a Hilbert spaces. On the other hand, p.p. rings were introduced by A. Hattori [2] to study the torsion theory. In this paper we introduce Baer near-rings and p.p. near-rings and study some properties and give some examples.

  • PDF

NEAR-RINGS WITH LEFT BAER LIKE CONDITIONS

  • Cho, Yong-Uk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.263-267
    • /
    • 2008
  • Kaplansky introduced the Baer rings as rings in which every left (or right) annihilator of each subset is generated by an idempotent. On the other hand, Hattori introduced the left (resp. right) P.P. rings as rings in which every principal left (resp. right) ideal is projective. The purpose of this paper is to introduce the near-rings with Baer like condition and near-rings with P.P. like condition which are somewhat different from ring case, and to extend the results of Arendariz and Jondrup.

ANNIHILATOR CONDITIONS ON RINGS AND NEAR-RINGS

  • Cho, Yong-Uk
    • The Pure and Applied Mathematics
    • /
    • v.10 no.3
    • /
    • pp.177-183
    • /
    • 2003
  • In this paper, we initiate the study of some annihilator conditions on polynomials which were used by Kaplansky [Rings of operators. W. A. Benjamin, Inc., New York, 1968] to abstract the algebra of bounded linear operators on a Hilbert spaces with Baer condition. On the other hand, p.p.-rings were introduced by Hattori [A foundation of torsion theory for modules over general rings. Nagoya Math. J. 17 (1960) 147-158] to study the torsion theory. The purpose of this paper is to introduce the near-rings with Baer condition and near-rings with p.p. condition which are somewhat different from ring case, and to extend a results of Armendariz [A note on extensions of Baer and P.P.-rings. J. Austral. Math. Soc. 18 (1974), 470-473] and Jøndrup [p.p. rings and finitely generated flat ideals. Proc. Amer. Math. Soc. 28 (1971) 431-435].

  • PDF

A STUDY ON ADDITIVE ENDOMORPHISMS OF RINGS

  • Cho, Yong-Uk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.149-156
    • /
    • 2001
  • In this paper, we initiate the investigation of ring in which all the additive endomorphisms are generated by ring endomorphisms (AGE-rings). This study was motivated by the work on the Sullivan’s Research Problem [11]: Characterize those rings in which every additive endomorphism is a ring endomorphism (AE-rings). The purpose of this paper is to obtain a certain characterization of AGE-rings, and investigate some relations between AGE and LSD-generated rings.

  • PDF

A STUDY ON ANNIHILATOR CONDITIONS OF POLYNOMIALS

  • Cho, Yong-Uk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.137-142
    • /
    • 2001
  • In this paper, we initiate the study of some annihilator conditions on polynomials which were used by Kaplansky [4] to abstract algebras of bounded linear operators on a Hilbert spaces with Baer condition. On the other hand, p.p. rings were introduced by A. Hattori [3] to study the torsion theory. The purpose of this paper is to introduce near-rings with Baer condition and near-rings with p.p. condition which are somewhat different from the ring case, and to extend a results of Armendarz [1] to polynomial near-rings with Baer condition in somewhat different way of Birkenmeier and Huang [2].

  • PDF

A NOTE ON STRONG REDUCEDNESS IN NEAR-RINGS

  • Cho, Yong-Uk
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.199-206
    • /
    • 2003
  • Let N be a right near-ring. N is said to be strongly reduced if, for $a\inN$, $a^2 \in N_{c}$ implies $a\;\in\;N_{c}$, or equivalently, for $a\inN$ and any positive integer n, $a^{n} \in N_{c}$ implies $a\;\in\;N_{c}$, where $N_{c}$ denotes the constant part of N. We will show that strong reducedness is equivalent to condition (ⅱ) of Reddy and Murty's property $(^{\ast})$ (cf. [Reddy & Murty: On strongly regular near-rings. Proc. Edinburgh Math. Soc. (2) 27 (1984), no. 1, 61-64]), and that condition (ⅰ) of Reddy and Murty's property $(^{\ast})$ follows from strong reducedness. Also, we will investigate some characterizations of strongly reduced near-rings and their properties. Using strong reducedness, we characterize left strongly regular near-rings and ($P_{0}$)-near-rings.

  • PDF

P(R,M) GAMMA NEAR-RINGS

  • Cho Yong-Uk;Chelvam T.Tamizh;Meenakumari N.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.2 s.32
    • /
    • pp.113-120
    • /
    • 2006
  • In this paper, we introduce the concept of P(r,m) $\Gamma$-near-ring and obtain some characterization of P(r,m) $\Gamma$-near-rings through regularity conditions.

  • PDF

A KUROSH-AMITSUR LEFT JACOBSON RADICAL FOR RIGHT NEAR-RINGS

  • Rao, Ravi Srinivasa;Prasad, K.Siva
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.457-466
    • /
    • 2008
  • Let R be a right near-ring. An R-group of type-5/2 which is a natural generalization of an irreducible (ring) module is introduced in near-rings. An R-group of type-5/2 is an R-group of type-2 and an R-group of type-3 is an R-group of type-5/2. Using it $J_{5/2}$, the Jacobson radical of type-5/2, is introduced in near-rings and it is observed that $J_2(R){\subseteq}J_{5/2}(R){\subseteq}J_3(R)$. It is shown that $J_{5/2}$ is an ideal-hereditary Kurosh-Amitsur radical (KA-radical) in the class of all zero-symmetric near-rings. But $J_{5/2}$ is not a KA-radical in the class of all near-rings. By introducing an R-group of type-(5/2)(0) it is shown that $J_{(5/2)(0)}$, the corresponding Jacobson radical of type-(5/2)(0), is a KA-radical in the class of all near-rings which extends the radical $J_{5/2}$ of zero-symmetric near-rings to the class of all near-rings.

TOPOLOGICAL CONDITIONS OF NI NEAR-RINGS

  • Dheena, P.;Jenila, C.
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.669-677
    • /
    • 2013
  • In this paper we introduce the notion of NI near-rings similar to the notion introduced in rings. We give topological properties of collection of strongly prime ideals in NI near-rings. We have shown that if N is a NI and weakly pm near-ring, then $Max(N)$ is a compact Hausdorff space. We have also shown that if N is a NI near-ring, then for every $a{\in}N$, $cl(D(a))=V(N^*(N)_a)=Supp(a)=SSpec(N){\setminus}int\;V(a)$.

Two More Radicals for Right Near-Rings: The Right Jacobson Radicals of Type-1 and 2

  • Rao, Ravi Srinivasa;Prasad, K. Siva
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.603-613
    • /
    • 2006
  • Near-rings considered are right near-rings and R is a near-ring. $J_0^r(R)$, the right Jacobson radical of R of type-0, was introduced and studied by the present authors. In this paper $J_1^r(R)$ and $J_2^r(R)$, the right Jacobson radicals of R of type-1 and type-2 are introduced. It is proved that both $J_1^r$ and $J_2^r$ are radicals for near-rings and $J_0^r(R){\subseteq}J_1^r(R){\subseteq}J_2^r(R)$. Unlike the left Jacobson radical classes, the right Jacobson radical class of type-2 contains $M_0(G)$ for many of the finite groups G. Depending on the structure of G, $M_0(G)$ belongs to different right Jacobson radical classes of near-rings. Also unlike left Jacobson-type radicals, the constant part of R is contained in every right 1-modular (2-modular) right ideal of R. For any family of near-rings $R_i$, $i{\in}I$, $J_{\nu}^r({\oplus}_{i{\in}I}R_i)={\oplus}_{i{\in}I}J_{\nu}^r(R_i)$, ${\nu}{\in}\{1,2\}$. Moreover, under certain conditions, for an invariant subnear-ring S of a d.g. near-ring R it is shown that $J_2^r(S)=S{\cap}J_2^r(R)$.

  • PDF