Bull. Korean Math. Soc. 45 (2008), No. 2, pp. 263-267

NEAR-RINGS WITH LEFT BAER LIKE CONDITIONS

YonGg Uk CHO

ABSTRACT. Kaplansky introduced the Baer rings as rings in which every
left (or right) annihilator of each subset is generated by an idempotent.
On the other hand, Hattori introduced the left {(resp. right) P.P. rings
as rings in which every principal left (resp. right) ideal is projective.
The purpose of this paper is to introduce the near-rings with Baer like
condition and near-rings with P.P. like condition which are somewhat
different from ring case, and to extend the results of Armendariz and
Jendrup.

1. Introduction

All rings and near-rings are assumed to be with identity. In [6], Kaplansky
introduced the Baer rings as rings in which every left (right) annihilator is
generated by an idempotent. On the other hand, Hattori [4] introduced the
left P.P. rings as rings in which any principal left ideal is projective. Also,
Berberian [3] called this concept as left Rickart ring.

In this paper, we introduce left Baer near-rings and left P.P. near-rings and
give some examples of them and study some of their properties.

Let G be an additively written (but not necessarily abelian) group with zero
element 0 and

Mo(G) ={f:G =G| f(0) =0}
the near-ring of all zero respecting mappings on G. We shall show that My(G)
is a left Baer near-ring. Also, as a corollary, we shall show that every zero-
symmetric near-ring can be embedded into a left Baer near-ring.

Let R be a commutative ring with identity. When R is reduced, it is well
known that R is a Baer (resp. P.P.) ring if and only if the polynomial ring
R[z] is a Baer (resp. P.P.) ring (see e.g., Armendariz [1] and Jendrup [5]).
Corresponding to this result, we will prove that the zero-symmetric part of
R[z] is a left Baer (resp. left P.P.) near-ring if and only if R is a Baer (resp.
left P.P.) ring.
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Finally we shall study some properties of a zero-symmetric reduced near-
ring with identity and the structure of a zero-symmetric reduced P.P. near-ring
with identity.

2. Baer like near-rings and P.P. like near-rings

A (right) near-ring is a set N with two binary operations + and - such that
(N,+) is a (not necessarily abelian) group with zero 0, (N,:) is a semigroup
and (z +y)z =2z +yz forall z,y,2 € N.

Some notations, basic definitions and concepts in near-ring theory can be
found in Meldrum [7] and Pilz [8].

For any nonempty subset S of a near-ring N, the set {a € N | aS = 0} is
called the left annshilator of S in N which is denoted by In(S), simply, I(S).

Note that () is a left ideal of N, if S is an N-subset of N, then I(S) is an
ideal of N and I(S) = (), cg(z). Similarly, the set {a € N | Sa = 0} is called
the right annihilator of S in N which is denoted by rn(S), simply, 7(S).

A near-ring N is called a left Baer near-ring if, for any subset S of N, I(S)
= l(e) for some idempotent e € N. The right Baer near-rings are defined
similarly.

The following remark is obtained obviously:

Let N; (i € I) be a family of near-rings. Then the direct product [[,.; N;
is a left Baer near-ring if and only if N; is a left Baer near-ring for each ¢ € 1.

A near-ring N is said to be integral if N has no nonzero divisors of zero ([8,
1.14, p.11]).

Example 1. (1) Every constant near-ring is a left Baer near-ring.
(2) A direct product of integral near-rings with identity is a left Baer near-
ring.

Following Beidleman [2], we call that a near-ring N is von Neumann regular
if, for any £ € N, there exists y € N such that zyz = z. Beidleman [2,
Theorem 1] proved that Mp(G) is a regular near-ring. Now, we can show that
My(G) is left Baer. But, in general, M(G) is not left Baer.

Theorem 1. The near-ring Mo(G) is a left Baer near-ring.

Proof. Let S be a nonempty subset of Mp(G) and let H = {s(g) |s € S, g € G}.
Let e be a mapping on G such that if z € H, then e(z) = z and e(y) = 0 for
any y € G — H. Then e is an idempotent of My(G) and clearly, we see that
1(S) = l(e). This implies that My(G) is a left Baer near-ring. O

Corollary 1. Every zero-symmetric near-ring can be embedded into a left Baer
near-ring.

Proof. By [8, 1.102], every zero-symmetric near-ring can be embedded into
a zero-symmetric near-ring with identity. Let N be a zero-symmetric near-
ring with identity. By Theorem 1, My(N) is a left Bear near-ring. For any
r € N, the mapping f. : t € N — rt € N is an element of Mp(N). Since
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N contains an identity, the mapping f : N — My(N);r = f. is a near-ring
monomorphism. O

An associative ring R called a left P.P. ring if every principal left ideal of R
is projective. This is equivalent to the condition that, for any a € R, I(a) = l(e)
for some idempotent e € R. A right P.P. ring is defined in a symmetric way. A
right and left P.P. ring is called a P.P. ring.

Now we call a near-ring N a left P.P. near ring if, for any a € N, l(a) =
I{e) for some idempotent e € N. Also, a right P.P. near-ring is defined in
a symmetric way. A right and left P.P. near-ring is called a P.P. near-ring.
Clearly a left Baer near-ring is a left P.P. near-ring,.

Example 2. Every von Neumann regular near-ring is a left P.P. near ring.
In fact, for any z € N, there exists y € N such that zyz = . Then zy is
an idempotent and obviously, we have l(z) = I(zy).

Let R be a commutative ring with identity and let R[z] denote the set of
all polynomials in one indeterminate x over B. Under usual addition + and
substitution o of polynomials, (R[z], +, 0) becomes a near-ring.

A zero symmetric near-ring is a near-ring N with a0 = 0 for all a € R.

Following Pilz [8, 7.78, p.221], Ro[z] denotes the zero symmetric part of

R[z], that is,
Rolz] = {Zaiwi |a; € R,n > 1}.
i=1
The following is a near-ring theoretic modification of Jgndrup [5, Theo-
rem 1.2]. Recall that a ring R with no nonzero nilpotent elements is called
reduced, equivalently, a®> = 0 in R implies a = 0.

Theorem 2. Let R be a commutative ring with identity. Then the following
conditions are equivalent:

1) Rylz] is a left P.P. near-ring;

2) R is a reduced and P.P. ring.

Proof. 1) = 2). First we claim that R is reduced. Suppose that a € R with
a®? = 0. By hypothesis, there exists an idempotent f € Ro[z] such that I(az) =
I(f). Let f = a1z + agax? + -+ + a,z™ with a; € R. Since f is an idempotent,
we have a? = a;. Since ax € l(az), az o f = af = 0. In particular, aa; = 0.
Also, since f is an idempotent, x — f € I(f), and we have

0=(x - f)oar =az — f(ax).

Hence az? = ayax = 0, that is a = 0. This proves that R is reduced. Since R
is reduced, the set of idempotents of Ry[z] is just {ex | e = e € R}. Now let r
be an arbitrary element of E. By hypothesis, there exists an idempotent e € R
such that {(rz) = l(ex). Clearly this implies that

lfry={s€R|sr=0}=R(1—e)=l(e).
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Hence R is a P.P. ring.

2)=1). Let f =a12+---+anz™ € Ro[z] and g = biz+- - -+b,,2™ € Rolz].
First we claim that f o g = 0 if and only if a;b; = 0 for all 7,5. It suffices to
prove the ‘only if’ part. Let P be an arbitrary prime ideal of R and let f
and g denote the image of f and g in (R/P)[z] respectively. Since R/P is an
integral domain and since f o § = 0, we can easily see that either f = 0 or
g = 0 holds. Hence a;b; € P for all 4, j. Since P is an arbitrary prime ideal,
this implies that a;b; € Rad(R), where Rad(R) denote the prime radical of R.
Since R is reduced, Rad(R) = 0. This proves our claim. Therefore ay,...,a, €
IR(b1, .- b))

Since R is a P.P. ring, for each i, there exists an idempotent e; € R such
that I(b;) = l{e;). If n = 2, then f = e; + e3 — e1e2 is an idempotent and
[r(b1,b2) = I(f). Using induction on n, we can find an idempotent e of R such
that g (b1,...,bm) = l(e). Then ez is an idempotent of Ro[z] and I(g) = l(ez).
Therefore Ry[z] is a left P.P. near-ring. O

Corollary 2. Let R be a commutative reduced ring with identity. Then the
following conditions are equivalent:

1) Ro[x] is a left P.P. near-ring;

2) R is a P.P. ring;

3) R[z] is a P.P. ring.

The next theorem provides more examples of left Baer near-rings.

Theorem 3. Let R be a commutative ring with identity. Then the following
conditions are equivalent:

1) Rolz] is a left Baer near-ring,

2) R is a reduced and Baer ring.

Proof. 1) = 2). Let T be a nonempty subset of R and consider the subset
S ={te |t € T} of Ro[z]. As saw in the proof of 1) = 2) of Theorem 2,
the set of idempotents of Rq[z] is just {ez | €2 = e € R}. Since Ry[z] is left
Baer, I(S) = l(ex) for some idempotent e € R. Then we can easily see that
Ir(T) = lr(e). Hence R is a Baer ring.

2) = 1). Let S be a subset of Ro[z] and consider the set T of all coefficients
of g(z) € S. Let f = a1z + -+ + ana™ € I(S). As saw in the proof of 2) =
1) of Theorem 2, a; € Ix(T) for all 5. Since R is a Baer ring, there exists an
idempotent e such that [g(T") = Ig(e). Now we can easily see that [(S) = l({ex).
This proves that Ry[z] is a left Baer near-ring. a

Corollary 3. Let R be a commutative reduced ring with identity. Then the
following conditions are equivalent:

1) Ry[z] is a left Baer near-ring,

2) R is a Baer ring;

3) R[z] is a Baer ring.
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Corollary 4. Let R be a commutative ring with identity. Then the following
conditions are equivalent:

1) R is a von Neumann regular ring;

2) (R/I)olz] 1s a left P.P. near-ring for all proper ideals I of R.

Proof. 1) = 2). If Ris von Neumann regular, then R/I is von Neumann regular
for every proper ideal I of R, so that R/I is a P.P. ring. Hence this follows
from Theorem 2.

2) = 1). As saw in the proof of 1) = 2) of Theorem 2, R/I is reduced for
every proper ideal I of R. Let a € R and consider the ideal Ra® of R. Since
R/Ra? is reduced and since a + Ra® € R/Ra? is nilpotent, we have a € Ra®.
This implies that R is von Neumann regular. O
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