• Title/Summary/Keyword: p-i-n Junction

Search Result 100, Processing Time 0.027 seconds

Analysis on the V-I Curve of ZnO:As/ZnO:Al homo-junction LED (ZnO:As/ZnO:Al homo-junction LED의 V-I 특성 분석)

  • Oh, Sang-Hyun;Jeong, Yun-Hwan;Liu, Yan-Yan;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.410-411
    • /
    • 2007
  • To investigate the ZnO LED which are interested in the next generation of short wavelength LEDs and Lasers, the ZnO thin films were deposited by RF magnetron sputtering system. The p-type ZnO thin film, fabricated by means of the ampoule-tube method, was used to make the ZnO p-n junction, and its characteristics was analyzed. The ampoule-tube method was used to make the p-type ZnO based on the As diffusion, and the hall measurement was used to confirm that the p-type is formed. the current-voltage characteristics of the ZnO p-n junction were measured to confirm the rectification characteristics of a typical p-n junction and the low leakage voltage characteristics. Analysis of ZnO LED V-I curve will provide a very useful technology for producing the UV ZnO LED and ZnO-based devices.

  • PDF

Characterization of Reverse Leakage Current Mechanism of Shallow Junction and Extraction of Silicidation Induced Schottky Contact Area for 0.15 ${\mu}{\textrm}{m}$ CMOS Technology Utilizing Cobalt Silicide (코발트 실리사이드 접합을 사용하는 0.15${\mu}{\textrm}{m}$ CMOS Technology에서 얕은 접합에서의 누설 전류 특성 분석과 실리사이드에 의해 발생된 Schottky Contact 면적의 유도)

  • 강근구;장명준;이원창;이희덕
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.10
    • /
    • pp.25-34
    • /
    • 2002
  • In this paper, silicidation induced Schottky contact area was obtained using the current voltage(I-V) characteristics of shallow cobalt silicided p+-n and n+-p junctions. In reverse bias region, Poole-Frenkel barrier lowering influenced predominantly the reverse leakage current, masking thereby the effect of Schottky contact formation. However, Schottky contact was conclusively shown to be the root cause of the modified I-V behavior of n+-p junction in the forward bias region. The increase of leakage current in silicided n+-p diodes is consistent with the formation of Schottky contact via cobalt slicide penetrating into the p-substrate or near to the junction area and generating trap sites. The increase of reverse leakage current is proven to be attributed to the penetration of silicide into depletion region in case of the perimeter intensive n+-p junction. In case of the area intensive n+-p junction, the silicide penetrated near to the depletion region. There is no formation of Schottky contact in case of the p+-n junction where no increase in the leakage current is monitored. The Schottky contact amounting to less than 0.01% of the total junction was extracted by simultaneous characterization of forward and reverse characteristics of silicided n+-p diode.

Fabrication of Flexible Passive Matrix by Using Silicon Nano-ribbon (실리콘 나노리본을 이용한 유연한 패시브 매트릭스 소자 제작)

  • Shin, Gun-Chul;Ha, Jeong-Sook
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.338-341
    • /
    • 2011
  • Thin silicon ribbon was used for fabricating flexible silicon p-i-n junction devices, consisting of 100${\times}$100 arrays of pixels in 1 inch on the diagonal. Those passive matrix devices exhibited the rectification ratio $>10^{4}$ owing to smaller cross-talking current than that of p-n junction devices. P-i-n devices fabricated on silica/silicon substrates are easily detached by treatment with hydrofluoric acid and are subsequently transferred onto both PDMS and flexible PET film.

Physics and current density-voltage characteristics of $a-Si_{1-x}Ge_x:H$ alloy p-i-n solar cells ($a-Si_{1-x}Ge_x:H$ 화합물(化合物) p-i-n 태양전지(太陽電池)의 물리(物理) 및 전류밀도(電流密度)-전압(電壓) 특성(特性))

  • Kwon, Young-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1435-1438
    • /
    • 1994
  • The effects of Ge composition variation in $a-Si_{1-x}Ge_x:H$ alloy p-i-n solar cells on the physical properties and current density-voltage characteristics are analyzed by a new simulation modelling based on the update published experimental datas. The simulation modelling includes newly formulated density of gap density spectrum corresponding to Ge composition variation and utilizes the newly derived generation rate formulars which include the reflection coefficients and can apply to multijunction structures as well as single junction structure. The effects in $a-Si_{1-x}Ge_x:H$ single junction are analyzed through the efficiency, fill factor, open circuit voltage, short circuit current density, free carriers, trap carriers, electric field, generation rate and recombination rate. Based on the results analyzed in single junction structure, the applications to multiple junction structures are discussed and the optimal conditions reaching to a high performance are investigated.

  • PDF

New Tunneling Model Including both the Thermal and the Tunneling Transition through Trap (트랩을 통한 열적 천이와 터널링 천이를 동시에 고려할 수 있는 새로운 터널링 모델에 관한 연구)

  • 박장우;곽계달
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.8
    • /
    • pp.71-77
    • /
    • 1992
  • According to increasing the doping concentration in p-n junction, a tunneling current through trap as well as SRH(Shockley-Read-Hall) generation-recombination current in depletion region occurs. It is the tunneling current that is a dominant current at the forward bias. In this paper, the new tunneling-recombination equation is derived. The thermal generation-recombination current and tunneling current though trap can be easily calculated at the same time because this equation has the same form as the SRH generation-recombination equation. For the validity of this equation, 2 kind of samples are simulated. The one is $n^{+}$-p junction device fabricated with MCT(Mercury Cadmium Telluride, mole fraction=0.29), the other Si n$^{+}-p^{+}$ junction. From the results for MCT $n^{+}$-p junction device and comparing the simulated and expermental I-V characteristics for Si n$^{+}-p^{+}$ junction, it is shown that this equation is a good description for tunneling through trap and thermal generation-recombination current calculation.

  • PDF

p-n heterojunction composed of n-ZnO/p-Zn-doped InP (n-ZnO/p-Zn doped InP의 p-n 이종접합 형성에 관한 연구)

  • Shim, Eun-Sub;Kang, Hong-Seong;Kang, Jeong-Seok;Bang, Seong-Sik;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.126-129
    • /
    • 2001
  • A p-n junction was obtained by the deposition of an n-type ZnO thin film on a p-type Zn-doped InP substrate. The Zn-doped InP substrate has been made by the diffusion of Zn with sealed ampoule technique. The ZnO deposition process was performed by pulsed laser deposition (PLD). The p-n junction was formed and showed a typical I-V characteristic. We will also discuss about the realization of an ultraviolet light-emitting diode (LED). The structure of n-ZnO/p-Zn-doped InP could be a good candidate for the realization of an ultraviolet light-emitting diode or an ultraviolet laser diode.

  • PDF

p-n heterojunction composed of n-ZnO/p-Zn-doped InP (n-ZnO/p-Zn doped InP의 p-n 이종접합 형성에 관한 연구)

  • 심은섭;강홍성;강정석;방성식;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.126-129
    • /
    • 2001
  • A p-n junction was obtained by the deposition of an n-type ZnO thin film on a p-type Zn-doped InP substrate. The Zn-doped InP substrate has been made by the diffusion of Zn with sealed ampoule technique. The ZnO deposition process ws performed by pulsed laser deposition (PLD). The p-n junction was formed and showed a typical I-V characteristic. We will also discuss about the realization of an ultraviolet light-emitting diode (LED). The structure of n-ZnO/p-Zn-doped InP could be a good candidate for the realization of an ultraviolet light-emitting diode or an ultraviolet laser diode.

  • PDF

p-n Heterojunction Composed of n-ZnO/p-Zn-doped InP

  • Shim, Eun-Sub;Kang, Hong-Seong;Kang, Jeong-Seok;Pang, Seong-Sik;Lee, Sang-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.1-3
    • /
    • 2002
  • A p-n junction was obtained by the deposition of an n-type ZnO thin film on a p-type Zn-doped InP substrate. The Zn-doped InP substrate has been made by the diffusion of Zn with sealed ampoule technique. The ZnO deposition process was performed by pulsed laser deposition (PLD). The p-n junction was formed and showed typical I-V characteristics. We will also discuss about the realization of an ultraviolet light-emitting diode (LED). The structure of n-ZnO/p-Zn-doped InP could be a good candidate for the realization of an ultraviolet light-emitting diode or an ultraviolet laser diode.

The a-Si:H/poly-Si Heterojunction Solar Cells

  • Kim, Sang-Su;Kim, do-Young;Lim, Dong-Gun;Junsin Yi;Lee, Jae-Choon;Lim, Koeng-Su
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.5
    • /
    • pp.65-71
    • /
    • 1997
  • We present heterojunction solar cells with a structure of metal/a-Si:H(n-i-p)/poly-Si(n-p)/metal for the terrestrial applications. This cell consists fo two component cells: a top n-i-p junction a-Si:Hi cell with wide-bandgap 1.8eV and a bottom n-p junction poly-Si cell with narrow-bandgap 1.1eV. The efficiency influencing factors of the solar cell were investigated in terms of simulation an experiment. Three main topics of the investigated study were the bottom cell with n-p junction poly-Si, the top a-Si:H cell with n-i-p junction, and the interface layer effects of heterojunction cell. The efficiency of bottom cell was improved with a pretreatment temperature of 900$^{\circ}C$, surface polishing, emitter thickness of 0.43$\mu\textrm{m}$, top Yb metal, and grid finger shading of 7% coverage. The process optimized cell showed a conversion efficiency about 16%. Top cell was grown by suing a photo-CVD system which gave an ion damage free and good p/i-a-Si:H layer interface. The heterojunction interface effect was examined with three different surface states; a chemical passivation, thermal oxide passivation, and Yb metal. the oxide passivated cell exhibited the higher photocurrent generation and better spectral response.

  • PDF

Ultra shallow $p^{+}$n junction formation using the boron diffusin form epi-co silicide (에피 코발트 실리사이드막으로 부터의 붕소 확산을 이용한 극저층 $p^{+}$n 접합 형성)

  • 변성자;권상직;김기범;백홍구
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.134-142
    • /
    • 1996
  • The epi-CoSi$_{2}$ layer was formed by alloying a Co(120$\AA$)/Ti(50$\AA$) bilayer. In addition, the ultra shallow p$^{+}$n junction of which depth is about not more than 40nm at the background concentration, 10$^{18}$atoms/cm$^{3}$ could be formed by annealing (RTA-II) the ion implanted epi-silicide. When the temperature of RTA-I is as low as possible and that of RTA-II is moderate, the p$^{+}$n junction that has low leakage current and stable epi-silicide layer could be obtained. That is, when th econdition of TRA-I was 900$^{\circ}C$/20sec and that of RTA-II was 900$^{\circ}C$/10sec, the reverse leakage current was as high as 11.3$\mu$A/cm$^{2}$ at -5V. The surface of CoSi$_{2}$ appeared considerably rough. However, when the conditon of RTA-I was 800$^{\circ}C$/20sec or 700$^{\circ}C$/20sec, the leakage currents were as low as 8.3nA/cm$^{2}$ and 9.3nA/cm$^{2}$, respectively and also the surfaces appeared very uniform.

  • PDF